Cohomological Induction and Unitary Representations (PMS-45)

Author(s):  
Anthony W. Knapp ◽  
David A. Vogan
2012 ◽  
Vol 64 (3) ◽  
pp. 669-704
Author(s):  
Alessandra Pantano ◽  
Annegret Paul ◽  
Susana A. Salamanca-Riba

Abstract We classify all genuine unitary representations of the metaplectic group whose infinitesimal character is real and at least as regular as that of the oscillator representation. In a previous paper we exhibited a certain family of representations satisfying these conditions, obtained by cohomological induction from the tensor product of a one-dimensional representation and an oscillator representation. Our main theorem asserts that this family exhausts the genuine omega-regular unitary dual of the metaplectic group.


2020 ◽  
Vol 32 (4) ◽  
pp. 941-964 ◽  
Author(s):  
Jian Ding ◽  
Chao-Ping Dong

AbstractLet G be a connected complex simple Lie group, and let {\widehat{G}^{\mathrm{d}}} be the set of all equivalence classes of irreducible unitary representations with non-vanishing Dirac cohomology. We show that {\widehat{G}^{\mathrm{d}}} consists of two parts: finitely many scattered representations, and finitely many strings of representations. Moreover, the strings of {\widehat{G}^{\mathrm{d}}} come from {\widehat{L}^{\mathrm{d}}} via cohomological induction and they are all in the good range. Here L runs over the Levi factors of proper θ-stable parabolic subgroups of G. It follows that figuring out {\widehat{G}^{\mathrm{d}}} requires a finite calculation in total. As an application, we report a complete description of {\widehat{F}_{4}^{\mathrm{d}}}.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nadav Drukker ◽  
Malte Probst ◽  
Maxime Trépanier

Abstract Surface operators are among the most important observables of the 6d $$ \mathcal{N} $$ N = (2, 0) theory. Here we apply the tools of defect CFT to study local operator insertions into the 1/2-BPS plane. We first relate the 2-point function of the displacement operator to the expectation value of the bulk stress tensor and translate this relation into a constraint on the anomaly coefficients associated with the defect. Secondly, we study the defect operator expansion of the stress tensor multiplet and identify several new operators of the defect CFT. Technical results derived along the way include the explicit supersymmetry tranformations of the stress tensor multiplet and the classification of unitary representations of the superconformal algebra preserved by the defect.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


1983 ◽  
Vol 3 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Colin E. Sutherland

AbstractIf K is a countable amenable group acting freely and ergodically on a probability space (Γ, μ), and G is an arbitrary countable amenable group, we construct an injection of the space of unitary representations of G into the space of unitary 1-cocyles for K on (Γ, μ); this injection preserves intertwining operators. We apply this to show that for many of the standard non-type-I amenable groups H, the representation theory of H contains that of every countable amenable group.


Sign in / Sign up

Export Citation Format

Share Document