Convergence of branching processes with several types of particles to Jirina processes

1995 ◽  
pp. 3-12
Keyword(s):  
2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


Author(s):  
C. N. Sun

Myoepithelial cells have been observed in the prostate, harderian, apocrine, exocrine sweat and mammary glands. Such cells and their numerous branching processes form basket-like structures around the glandular acini. Their shapes are quite different from structures seen either in spindleshaped smooth muscle cells or skeletal muscle cells. These myoepithelial cells lie on the epithelial side of the basement membrane in the glands. This presentation describes the ultrastructure of such myoepithelial cells which have been found also in the parotid gland carcinoma from a 45-year old patient.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4 percent glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1 percent buffered osmium tetroxide for 1 hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate. Ultrastructurally, the pattern of each individual cell showed wide variations.


1986 ◽  
Author(s):  
Stephen D. Durham ◽  
Kai F. Yu
Keyword(s):  

1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


2020 ◽  
Vol 52 (4) ◽  
pp. 1127-1163
Author(s):  
Jie Yen Fan ◽  
Kais Hamza ◽  
Peter Jagers ◽  
Fima C. Klebaner

AbstractA general multi-type population model is considered, where individuals live and reproduce according to their age and type, but also under the influence of the size and composition of the entire population. We describe the dynamics of the population as a measure-valued process and obtain its asymptotics as the population grows with the environmental carrying capacity. Thus, a deterministic approximation is given, in the form of a law of large numbers, as well as a central limit theorem. This general framework is then adapted to model sexual reproduction, with a special section on serial monogamic mating systems.


2020 ◽  
Vol 57 (4) ◽  
pp. 1111-1134
Author(s):  
Dorottya Fekete ◽  
Joaquin Fontbona ◽  
Andreas E. Kyprianou

AbstractIt is well understood that a supercritical superprocess is equal in law to a discrete Markov branching process whose genealogy is dressed in a Poissonian way with immigration which initiates subcritical superprocesses. The Markov branching process corresponds to the genealogical description of prolific individuals, that is, individuals who produce eternal genealogical lines of descent, and is often referred to as the skeleton or backbone of the original superprocess. The Poissonian dressing along the skeleton may be considered to be the remaining non-prolific genealogical mass in the superprocess. Such skeletal decompositions are equally well understood for continuous-state branching processes (CSBP).In a previous article [16] we developed an SDE approach to study the skeletal representation of CSBPs, which provided a common framework for the skeletal decompositions of supercritical and (sub)critical CSBPs. It also helped us to understand how the skeleton thins down onto one infinite line of descent when conditioning on survival until larger and larger times, and eventually forever.Here our main motivation is to show the robustness of the SDE approach by expanding it to the spatial setting of superprocesses. The current article only considers supercritical superprocesses, leaving the subcritical case open.


Sign in / Sign up

Export Citation Format

Share Document