markov branching process
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 57 (4) ◽  
pp. 1111-1134
Author(s):  
Dorottya Fekete ◽  
Joaquin Fontbona ◽  
Andreas E. Kyprianou

AbstractIt is well understood that a supercritical superprocess is equal in law to a discrete Markov branching process whose genealogy is dressed in a Poissonian way with immigration which initiates subcritical superprocesses. The Markov branching process corresponds to the genealogical description of prolific individuals, that is, individuals who produce eternal genealogical lines of descent, and is often referred to as the skeleton or backbone of the original superprocess. The Poissonian dressing along the skeleton may be considered to be the remaining non-prolific genealogical mass in the superprocess. Such skeletal decompositions are equally well understood for continuous-state branching processes (CSBP).In a previous article [16] we developed an SDE approach to study the skeletal representation of CSBPs, which provided a common framework for the skeletal decompositions of supercritical and (sub)critical CSBPs. It also helped us to understand how the skeleton thins down onto one infinite line of descent when conditioning on survival until larger and larger times, and eventually forever.Here our main motivation is to show the robustness of the SDE approach by expanding it to the spatial setting of superprocesses. The current article only considers supercritical superprocesses, leaving the subcritical case open.


2020 ◽  
Vol 18 (03) ◽  
pp. 447-468 ◽  
Author(s):  
Junping Li ◽  
Lan Cheng ◽  
Anthony G. Pakes ◽  
Anyue Chen ◽  
Liuyan Li

Large deviation rates are determined for quantities associated with a Markov branching process [Formula: see text] having offspring mean [Formula: see text] and split rate [Formula: see text]. The principal quantities examined are [Formula: see text] and [Formula: see text], where [Formula: see text] is the almost sure limit of an appropriately normed version of [Formula: see text]. Modifications and conditional versions are examined. Some of this requires determination of the asymptotic behavior of harmonic moments [Formula: see text].


2018 ◽  
Vol 51 (13) ◽  
pp. 85-90
Author(s):  
Alessandro Boianelli ◽  
Esteban A. Hernandez–Vargas

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Anthony G. Pakes

This paper studies aspects of the Siegmund dual of the Markov branching process. The principal results are optimal convergence rates of its transition function and limit theorems in the case that it is not positive recurrent. Additional discussion is given about specifications of the Markov branching process and its dual. The dualising Markov branching processes need not be regular or even conservative.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Azam A. Imomov

Consider the Markov Branching Process with continuous time. Our focus is on the limit properties of transition functions of this process. Using differential analogue of the Basic Lemma we prove local limit theorems for all cases and observe invariant properties of considering process.


2014 ◽  
Vol 51 (03) ◽  
pp. 613-624 ◽  
Author(s):  
Anyue Chen ◽  
Kai Wang Ng ◽  
Hanjun Zhang

In this paper we discuss the decay properties of Markov branching processes with disasters, including the decay parameter, invariant measures, and quasistationary distributions. After showing that the corresponding q-matrix Q is always regular and, thus, that the Feller minimal Q-process is honest, we obtain the exact value of the decay parameter λ C . We show that the decay parameter can be easily expressed explicitly. We further show that the Markov branching process with disaster is always λ C -positive. The invariant vectors, the invariant measures, and the quasidistributions are given explicitly.


2014 ◽  
Vol 51 (3) ◽  
pp. 613-624 ◽  
Author(s):  
Anyue Chen ◽  
Kai Wang Ng ◽  
Hanjun Zhang

In this paper we discuss the decay properties of Markov branching processes with disasters, including the decay parameter, invariant measures, and quasistationary distributions. After showing that the corresponding q-matrix Q is always regular and, thus, that the Feller minimal Q-process is honest, we obtain the exact value of the decay parameter λC. We show that the decay parameter can be easily expressed explicitly. We further show that the Markov branching process with disaster is always λC-positive. The invariant vectors, the invariant measures, and the quasidistributions are given explicitly.


Sign in / Sign up

Export Citation Format

Share Document