scholarly journals Miscanthus: Inter- and Intraspecific Genome Size Variation Among M. × Giganteus, M. Sinensis, M. Sacchariflorus Accessions

2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.

Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 730-735 ◽  
Author(s):  
Juha Kankanpää ◽  
Alan H. Schulman ◽  
Leena Mannonen

Hordeum, distributed worldwide in temperate zones, is the second largest genus in the tribe Triticeae and includes diploid, tetraploid, and hexaploid species. We determined, by DAPI staining and flow cytometry, the nuclear DNA content for 35 accessions of the genus Hordeum, from a total of 19 species, including specimens of 2 cultivars and 2 landraces of Hordeum vulgare ssp. vulgare as well as samples of 12 Hordeum vulgare ssp. spontaneum populations. Genome sizes ranged from 5.69 to 9.41 pg for the G1 nuclei of the diploids, and from 13.13 to 18.36 pg for those of the tetraploids. This constitutes a 1.7-fold variation for the diploids, contrasting with a 4% variation previously reported. For H. vulgare ssp. vulgare (barley), the accessions examined differed by 18%. These variations in genome size cannot be correlated with meiotic pairing groups (I, H, X, Y) or with proposed phylogenetic relationships within the genus. Genome size variation between barley accessions cannot be related to status as cultivated or wild, or to climatic or geological gradients. We suggest these data may indicate rapid but sporadic changes in genome size within the genus. Key words : barley, Hordeum, Triticeae, genome size, flow cytometry.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Monika Höfer ◽  
Armin Meister

The nuclear DNA content for 256 different accessions belonging to 26 primary Malus species and 20 species hybrids was estimated by flow cytometry using propidium iodide. Diploids ranged from 1.245 (M. tschonoskii) to 1.653  pg per 2C nucleus (M. florentina). As our study covered complete phylogenetic and geographic representation, preliminary conclusions between nuclear DNA content and geographical and taxonomic features could be drawn. The data indicated that species found far from the centre of origin in Asia clustered into separate sections and series and possessed higher DNA content. These are M. trilobata and M. florentina the only two species existing in South-East Europe on one hand; M. ioensis and 3x and 4x species M. heterophylla, M. platycarpa, M. glaucescens, M. angustifolia, M. lancifolia and M. coronaria—in East and Central North America on the other hand. A significantly decreased 1Cx DNA content was observed with the increase in ploidy for six species.


Genome ◽  
2010 ◽  
Vol 53 (12) ◽  
pp. 1066-1082 ◽  
Author(s):  
David Zaitlin ◽  
Andrew J. Pierce

The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet ( Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea , Saintpaulia, and Streptocarpus , all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia , a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%–26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine–cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon ( Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ∼633 × 106 base pairs, which is approximately 40% of the previously published estimate.


2020 ◽  
Vol 126 (6) ◽  
pp. 1077-1087
Author(s):  
Dora Čertnerová ◽  
Pavel Škaloud

Abstract Background and Aims While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. Methods Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. Key Results Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. Conclusions Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.


2019 ◽  
Author(s):  
Julie Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background: The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary: Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions: Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


2019 ◽  
Author(s):  
Julie Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background: The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary: Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions: Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


2019 ◽  
Author(s):  
Julie Esmeralda Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


2017 ◽  
Vol 8 ◽  
Author(s):  
A. Mondal S.K. Ghosal ◽  
T. Pal Kalyan Kumar De

<p>In the present study, 2C DNA content and the genome sizes (in picograms-pg and megabase pairs-Mbp respectively) of 19 promising commercial varieties of sugarcane, the derivatives of man-made interspecific hybrids between cultivated and wild species were analyzed using flow cytometry. In this work, 2C nuclear DNA content was determined. Knowing the 2C nuclear DNA content, the unknown chromosome numbers of the varieties could be predicted. Large differences (65 % variation) in DNA content (2C) of 19 varieties were detected, ranging, from 3.80 pg to 10.96 pg, which corresponds to a genome size ranging from 3724.00 Mbp to 10740.80 Mbp due to the variation of ploidy level and are considered the most complex genomes among crop plants. However, the relationship between chromosome number and genome size was highly significant (P &lt; 0.001). In the present study, internode diameter, Sugar juice content and cane yield/ha are also positively correlated with DNA content. The estimated genome sizes would also yield information critical for sugarcane breeding and genome sequencing programs.                                </p><p><strong>Keywords</strong><strong>: </strong>Genome size, Sugarcane varieties, Flow cytometry, DNA content.</p>


Genome ◽  
2011 ◽  
Vol 54 (7) ◽  
pp. 575-585 ◽  
Author(s):  
Solomon Benor ◽  
Jörg Fuchs ◽  
Frank R. Blattner

In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = –0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.


Genome ◽  
2006 ◽  
Vol 49 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Sònia Garcia ◽  
Teresa Garnatje ◽  
John D Twibell ◽  
Joan Vallès

Different wild Mediterranean populations of Artemisia arborescens from diverse locations representing its geographical distribution, as well as some of its well-known cultivars and some specimens cultivated as ornamentals in gardens, streets, roads and nurseries, were analysed for genome size. Other closely related species endemic to Macaronesia, Artemisia canariensis, Artemisia argentea, and Artemisia gorgonum, were also analysed, and their nuclear DNA amount has been related to the biogeography of this group of species. Additionally, 5 populations of the closely related Artemisia absinthium were analysed to establish comparisons. Measurements acquired by flow cytometry ranged from 8.29 to 11.61 pg for 2C values. Statistically significant differences of 2C nuclear DNA amounts with respect to factors such as insularity or domestication have been detected. However, quite a low intraspecific genome size variation has been found in these species. Furthermore, the study also addressed the possible hybrid origins and possible misidentifications of some of the supposed cultivars of A. arborescens.Key words: Artemisia arborescens, Artemisia absinthium, Artemisia argentea, Artemisia canariensis, Artemisia gorgonum, C value, Compositae, cultivar, domestication, flow cytometry, genome size, hybridization, interspecific variation, intraspecific variation, speciation.


Sign in / Sign up

Export Citation Format

Share Document