Existence of Heteroclinic Solutions for a Pseudo-relativistic Allen-Cahn Type Equation

2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Vincenzo Ambrosio

AbstractWe study the existence and uniqueness of heteroclinic solutions to non-linear Allen-Cahn equationwhere G is a double-well potential. We investigate such a problem using variational methods after transforming the problem to an elliptic equation with a nonlinear Neumann boundary conditions.

2022 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Ghasem A. Afrouzi ◽  
Z. Naghizadeh ◽  
Nguyen Thanh Chung

In this paper, we are interested in a class of bi-nonlocal problems with nonlinear Neumann boundary conditions and sublinear terms at infinity. Using $(S_+)$ mapping theory and variational methods, we establish the existence of at least two non-trivial weak solutions for the problem provied that the parameters are large enough. Our result complements and improves some previous ones for the superlinear case when the Ambrosetti-Rabinowitz type conditions are imposed on the nonlinearities.


2021 ◽  
Vol 10 (8) ◽  
pp. 3013-3022
Author(s):  
C.A. Gomez ◽  
J.A. Caicedo

In this work, we consider the rescaled nonlocal diffusion problem with Neumann Boundary Conditions \[ \begin{cases} u_t^{\epsilon}(x,t)=\displaystyle\frac{1}{\epsilon^2} \int_{\Omega}J_{\epsilon}(x-y)(u^\epsilon(y,t)-u^\epsilon(x,t))dy\\ \qquad \qquad+\displaystyle\frac{1}{\epsilon}\int_{\partial \Omega}G_\epsilon(x-y)g(y,t)dS_y,\\ u^\epsilon(x,0)=u_0(x), \end{cases} \] where $\Omega\subset\mathbb{R}^{N}$ is a bounded, connected and smooth domain, $g$ a positive continuous function, $J_\epsilon(z)=C_1\frac{1}{\epsilon^N}J(\frac{z}{\epsilon}), G_\epsilon(x)=C_1\frac{1}{\epsilon^N}G(\frac{x}{\epsilon}),$ $J$ and $G$ well defined kernels, $C_1$ a normalization constant. The solutions of this model have been used without prove to approximate the solutions of a family of nonlocal diffusion problems to solutions of the respective analogous local problem. We prove existence and uniqueness of the solutions for this problem by using the Banach Fixed Point Theorem. Finally, some conclusions are given.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Denis Bonheure ◽  
Hussein Cheikh Ali ◽  
Robson Nascimento

AbstractWe consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold.


1997 ◽  
Vol 40 (2) ◽  
pp. 275-291 ◽  
Author(s):  
John Chadam ◽  
Xinfu Chen ◽  
Roberto Gianni ◽  
Riccardo Ricci

In this paper, we consider a reaction infiltration problem consisting of a parabolic equation for the concentration, an elliptic equation for the pressure, and an ordinary differential equation for the porosity. Existence and uniqueness of a global classical solution is proved for bounded domains Ω⊂RN, under suitable boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document