Dynamics of an ecological system

2019 ◽  
Vol 10 (4) ◽  
pp. 355-376
Author(s):  
Shashi Kant

AbstractIn this paper, we investigate the deterministic and stochastic prey-predator system with refuge. The basic local stability results for the deterministic model have been performed. It is found that all the equilibrium points except the positive coexisting equilibrium point of the deterministic model are independent of the prey refuge. The trivial equilibrium point, predator free equilibrium point and prey free equilibrium point are always unstable (saddle point). The existence and local stability of the coexisting equilibrium point is related to the prey refuge. The permanence and extinction conditions of the proposed biological model have been studied rigourously. It is observed that the stochastic effect may be seen in the form of decaying of the species. The numerical simulations for different values of the refuge values have also been included for understanding the behavior of the model graphically.

2020 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Lazarus Kalvein Beay ◽  
Maryone Saija

We proposed and analyzed a stage-structure Rosenzweig-MacArthur model incorporating a prey refuge.  It is assumed that the prey is a stage-structure population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By constructing Jacobian matrix and determined eigenvalues, we analyzed the local stability of the trivial equilibrium and non-predator equilibrium points. Specifically for coexistence equilibrium point, Routh-Hurwitz criterion used to analyze local stability. In addtion, we investigated the effect of immature prey refuge. Our mathematical analysis exhibits that immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey refuge (constant m) increases, it is can stabilize non-predator equilibrium point, where all the species can not exists together. And conversely, if contant m decreases, it is can stabilize coexistence equilibrium point then all the species can exists together. The work is completed with a numerical simulation to confirmed analitical results


2021 ◽  
Vol 2 (1) ◽  
pp. 42-50
Author(s):  
Lazarus Kalvein Beay ◽  
Maryone Saija

A kind of stage-structure Rosenzweig–MacArthur model with linear harvesting in prey and cannibalism in predator is investigated in this paper. By analyzing the model, local stability of all possible equilibrium points is discussed. Moreover, the model undergoes a Hopf–bifurcation around the interior equilibrium point. Numerical simulations are carried out to illustrate our main results.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450133 ◽  
Author(s):  
Haijun Wang ◽  
Xianyi Li

After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 497
Author(s):  
Y. Suresh Kumar ◽  
N. Seshagiri Rao ◽  
B. V AppaRao

The present work is related to a three species ecosystem including a mutualism interaction between two species and a predator, where the predator is depending on both the mutual species. All three species in this model are considered in limited resources. The sustainability of the system (local stability) is discussed through the perturbed technique at the possible existing each equilibrium points. Using Lyapunov's technique the global stability of the system is also described. Further the nature of the system is observed by introducing the stochastic process to the species and the numerical simulations are studied to know the interaction among the species. 


2020 ◽  
Vol 30 (16) ◽  
pp. 2050239
Author(s):  
Udai Kumar ◽  
Partha Sarathi Mandal

Many important factors in ecological communities are related to the interplay between predation and competition. Intraguild predation or IGP is a mixture of predation and competition which is a very basic three-dimensional system in food webs where two species are related to predator–prey relationship and are also competing for a shared prey. On the other hand, Allee effect is also a very important ecological factor which causes significant changes to the system dynamics. In this work, we consider a intraguild predation model in which predator is specialist, the growth of shared prey population is subjected to additive Allee effect and there is Holling-Type III functional response between IG prey and IG predator. We analyze the impact of Allee effect on the global dynamics of the system with the prior knowledge of the dynamics of the model without Allee effect. Our theoretical and numerical analyses suggest that: (1) Trivial equilibrium point is always locally asymptotically stable and it may be globally stable also. Hence, all the populations may go to extinction depending upon initial conditions; (2) Bistability is observed between unique interior equilibrium point and trivial equilibrium point or between boundary equilibrium point and trivial equilibrium point; (3) Multiple interior equilibrium points exist under certain parameters range. We also provide here a comprehensive study of bifurcation analysis by considering Allee effect as one of the bifurcation parameters. We observed that Allee effect can generate all possible bifurcations such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, Bogdanov–Taken bifurcation and Bautin bifurcation. Finally, we compared our model with the IGP model without Allee effect for better understanding the impact of Allee effect on the system dynamics.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Isa Abdullahi Baba ◽  
Bashir Abdullahi Baba ◽  
Parvaneh Esmaili

In this paper, we developed a model that suggests the use of robots in identifying COVID-19-positive patients and which studied the effectiveness of the government policy of prohibiting migration of individuals into their countries especially from those countries that were known to have COVID-19 epidemic. Two compartmental models consisting of two equations each were constructed. The models studied the use of robots for the identification of COVID-19-positive patients. The effect of migration ban strategy was also studied. Four biologically meaningful equilibrium points were found. Their local stability analysis was also carried out. Numerical simulations were carried out, and the most effective strategy to curtail the spread of the disease was shown.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. A. Elsadany ◽  
A. E. Matouk

The delay Cournot duopoly game is studied. Dynamical behaviors of the game are studied. Equilibrium points and their stability are studied. The results show that the delayed system has the same Nash equilibrium point and the delay can increase the local stability region.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2008 ◽  
Vol 18 (11) ◽  
pp. 3233-3297 ◽  
Author(s):  
LEQUAN MIN ◽  
YAN MENG ◽  
LEON O. CHUA

The study of chemical reactions with oscillating kinetics has drawn increasing interest over the last few decades because it also contributes towards a deeper understanding of the complex phenomena of temporal and spatial organizations in biological systems. The Cellular Nonlinear Network (CNN) local activity principle introduced by Chua [1997, 2005] has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice formed by coupled cells. Recently, Yang and Epstein proposed a reaction–diffusion Oregonator model with five variables for mimicking the Belousov–Zhabotinskii reaction. The Yang–Epstein model can generate oscillatory Turing patterns, including the twinkling eye, localized spiral and concentric wave structures. In this paper, we first propose a modified Yang–Epstein's Oregonator model by introducing a controller, and then map the revised Oregonator reaction–diffusion system into a reaction–diffusion Oregonator CNN. The Oregonator CNN has two cell equilibrium points Q1 = (0, 0, 0, 0, 0) and Q2, representing the "original" equilibrium point and an additional equilibrium point, respectively. The bifurcation diagrams of the Oregonator CNN are calculated using the analytical criteria for local activity. The bifurcation diagrams of the Oregonator CNN at Q1 have only locally active and unstable regions; and the ones at Q2 have locally passive regions, locally active and unstable regions, and edge of chaos regions. The calculated results show that the parameter groups of the Oregonator CNN which generate complex patterns are located on the edge of chaos regions, or on locally active unstable regions near the edge of chaos boundary. Numerical simulations show also that the Oregonator CNNs can generate similar dynamics patterns if the parameter groups are selected the same as those of the Yang–Epstein model. In particular, the parameters of the Yang–Epstein model which exhibit twinkling-eye patterns, and pinwheel patterns are located on the edges of chaos regions near the boundaries of locally active unstable regions with respect to Q2. The parameters of the Yang–Epstein models which exhibit labyrinthine stripelike patterns are located on the locally active unstable regions near the boundaries of the edge of chaos regions with respect to Q2. However the parameter group of the Yang–Epstein model with isolated spiral patterns is in the locally passive region near the boundary with edge of chaos with respect to Q2, whose trajectories tend to the equilibrium point Q2. Choosing a kind of triggering initial conditions given in [Chua, 1997], and the parameters of the Oregonator equations with the twinkling-eye patterns, pinwheel patterns, labyrinthine stripelike patterns, and isolated spiral patterns, three kinds of new spiral waves generated by the Oregonator CNNs were observed by numerical simulations. They seem to be essentially different patterns to those generated by the Oregonator CNNs with initial conditions consisting of equilibrium points plus small random perturbations. Our results demonstrate once again Chua's assertion that a wide spectrum of complex behaviors may exist if the corresponding CNN cell parameters are chosen in or near the edge of chaos region.


2021 ◽  
Author(s):  
Resmawan Resmawan ◽  
Agusyarif Rezka Nuha ◽  
Lailany Yahya

This paper discusses the dynamics of COVID-19 transmission by involving quarantine interventions. The model was constructed by involving three classes of infectious causes, namely the exposed human class, asymptotically infected human class, and symptomatic infected human class. Variables were representing quarantine interventions to suppress infection growth were also considered in the model. Furthermore, model analysis is focused on the existence of equilibrium points and numerical simulations to visually showed population dynamics. The constructed model forms the SEAQIR model which has two equilibrium points, namely a disease-free equilibrium point and an endemic equilibrium point. The stability analysis showed that the disease-free equilibrium point was locally asymptotically stable at R0<1 and unstable at R0>1. Numerical simulations showed that increasing interventions in the form of quarantine could contribute to slowing the transmission of COVID-19 so that it is hoped that it can prevent outbreaks in the population.


Sign in / Sign up

Export Citation Format

Share Document