On derived equivalences and homological dimensions

Author(s):  
Ming Fang ◽  
Wei Hu ◽  
Steffen Koenig

AbstractUnlike Hochschild (co)homology and K-theory, global and dominant dimensions of algebras are far from being invariant under derived equivalences in general. We show that, however, global dimension and dominant dimension are derived invariant when restricting to a class of algebras with anti-automorphisms preserving simples. Such anti-automorphisms exist for all cellular algebras and in particular for many finite-dimensional algebras arising in algebraic Lie theory. Both dimensions then can be characterised intrinsically inside certain derived categories. On the way, a restriction theorem is proved, and used, which says that derived equivalences between algebras with positive ν-dominant dimension always restrict to derived equivalences between their associated self-injective algebras, which under this assumption do exist.

Author(s):  
HONGXING CHEN ◽  
MING FANG ◽  
OTTO KERNER ◽  
STEFFEN KOENIG ◽  
KUNIO YAMAGATA

Abstract A new homological dimension, called rigidity dimension, is introduced to measure the quality of resolutions of finite dimensional algebras (especially of infinite global dimension) by algebras of finite global dimension and big dominant dimension. Upper bounds of the dimension are established in terms of extensions and of Hochschild cohomology, and finiteness in general is derived from homological conjectures. In particular, the rigidity dimension of a non-semisimple group algebra is finite and bounded by the order of the group. Then invariance under stable equivalences is shown to hold, with some exceptions when there are nodes in case of additive equivalences, and without exceptions in case of triangulated equivalences. Stable equivalences of Morita type and derived equivalences, both between self-injective algebras, are shown to preserve rigidity dimension as well.


2010 ◽  
Vol 200 ◽  
pp. 107-152 ◽  
Author(s):  
Wei Hu ◽  
Changchang Xi

AbstractFor self-injective algebras, Rickard proved that each derived equivalence induces a stable equivalence of Morita type. For general algebras, it is unknown when a derived equivalence implies a stable equivalence of Morita type. In this article, we first show that each derived equivalenceFbetween the derived categories of Artin algebrasAandBarises naturally as a functorbetween their stable module categories, which can be used to compare certain homological dimensions ofAwith that ofB. We then give a sufficient condition for the functorto be an equivalence. Moreover, if we work with finite-dimensional algebras over a field, then the sufficient condition guarantees the existence of a stable equivalence of Morita type. In this way, we extend the classical result of Rickard. Furthermore, we provide several inductive methods for constructing those derived equivalences that induce stable equivalences of Morita type. It turns out that we may produce a lot of (usually not self-injective) finite-dimensional algebras that are both derived-equivalent and stably equivalent of Morita type; thus, they share many common invariants.


2010 ◽  
Vol 200 ◽  
pp. 107-152 ◽  
Author(s):  
Wei Hu ◽  
Changchang Xi

AbstractFor self-injective algebras, Rickard proved that each derived equivalence induces a stable equivalence of Morita type. For general algebras, it is unknown when a derived equivalence implies a stable equivalence of Morita type. In this article, we first show that each derived equivalence F between the derived categories of Artin algebras A and B arises naturally as a functor between their stable module categories, which can be used to compare certain homological dimensions of A with that of B. We then give a sufficient condition for the functor to be an equivalence. Moreover, if we work with finite-dimensional algebras over a field, then the sufficient condition guarantees the existence of a stable equivalence of Morita type. In this way, we extend the classical result of Rickard. Furthermore, we provide several inductive methods for constructing those derived equivalences that induce stable equivalences of Morita type. It turns out that we may produce a lot of (usually not self-injective) finite-dimensional algebras that are both derived-equivalent and stably equivalent of Morita type; thus, they share many common invariants.


Author(s):  
Ming Fang ◽  
Wei Hu ◽  
Steffen Koenig

AbstractGroup algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality with classical and quantised Schur algebras, respectively. Two homological dimensions, the dominant dimension and the global dimension, of the indecomposable summands (blocks) of these Schur algebras S(n, r) and $$S_q(n,r)$$ S q ( n , r ) with $$n \geqslant r$$ n ⩾ r are determined explicitly, using a result on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59–85, 2021).


2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.


1999 ◽  
Vol 51 (3) ◽  
pp. 488-505 ◽  
Author(s):  
W. D. Burgess ◽  
Manuel Saorín

AbstractThis article studies algebras R over a simple artinian ring A, presented by a quiver and relations and graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan matrices, is examined. It is used to study homological properties.A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of the Hilbert Σ-series in the associated path incidence ring.The rationality of the Σ-Euler characteristic, the Hilbert Σ-series and the Poincaré-Betti Σ-series is studied when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.


1994 ◽  
Vol 36 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Ibrahim Assem ◽  
Flávio Ulhoa Coelho

It is reasonable to expect that the representation theory of an algebra (finite dimensional over a field, basic and connected) can be used to study its homological properties. In particular, much is known about the structure of the Auslander-Reiten quiver of an algebra, which records most of the information we have on its module category. We ask whether one can predict the homological dimensions of a module from its position in the Auslander-Reiten quiver. We are particularly interested in the case where the algebra is a tilted algebra. This class of algebras of global dimension two, introduced by Happel and Ringel in [7], has since then been the subject of many investigations, and its representation theory is well understood by now (see, for instance, [1], [7], [8], [9], [11], [13]).In this case, the most striking feature of the Auslander-Reiten quiver is the existence of complete slices, which reproduce the quiver of the hereditary algebra from which the tilted algebra arises. It follows from well-known results that any indecomposable successor (or predecessor) of a complete slice has injective (or projective, respectively) dimension at most one, from which one deduces that a tilted algebra is representation-finite if and only if both the projective and the injective dimensions of almost all (that is, all but at most finitely many non-isomorphic) indecomposable modules equal two (see (3.1) and (3.2)). On the other hand, the authors have shown in [2, (3.4)] that a representation-infinite algebra is concealed if and only if both the projective and the injective dimensions of almost all indecomposable modules equal one (see also [14]). This leads us to consider, for tilted algebras which are not concealed, the case when the projective (or injective) dimension of almost all indecomposable successors (or predecessors, respectively) of a complete slice equal two. In order to answer this question, we define the notions of left and right type of a tilted algebra, then those of reduced left and right types (see (2.2) and (3.4) for the definitions).


2014 ◽  
Vol 14 (2) ◽  
pp. 379-403 ◽  
Author(s):  
Gonçalo Tabuada ◽  
Michel Van den Bergh

AbstractLet $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar isomorphism holds for every $R$-linear additive invariant. This leads to several computations. Along the way we show that, in the case of finite-dimensional algebras of finite global dimension, all additive invariants are nilinvariant.


1968 ◽  
Vol 20 ◽  
pp. 398-409 ◽  
Author(s):  
Bruno J. Mueller

Nakayama proposed to classify finite-dimensional algebras R over a field according to how long an exact sequenceof projective and injective R-R-bimodules Xi they allow. He conjectured that if there exists an infinite sequence of this type, then R must be quasi-Frobenius; and he proved this when R is generalized uniserial (17).


Sign in / Sign up

Export Citation Format

Share Document