scholarly journals Epitaxial Growth and Multiferroic Properties of (001)-Oriented BiFeO3-YMnO3 Films

2015 ◽  
Vol 2 (3-4) ◽  
pp. 157-162
Author(s):  
Peng-Xiao Nie ◽  
Yi-Ping Wang ◽  
Ying Yang ◽  
Guo-Liang Yuan ◽  
Wei Li ◽  
...  

Abstract In this paper, high-quality multiferroic (1-x)BiFeO3-xYMnO3 (x=0.05, 0.10, 0.15) thin films were successfully epitaxially grown on (001)SrTiO3 substrates with La0.67Sr0.33MnO3 buffered layers by pulsed laser deposition (PLD). X-ray diffraction shows the thin films are all single-phase perovskite with preferential orientation along the (001) direction. The (002) diffraction angles of thin films (from 0 to 0.15) shift to right, indicating the decrease of lattice parameters. All YMnO3-doped thin films exhibit strong upward self-poling via piezoelectric force microscope (PFM) measurement. Saturated ferroelectric hysteresis loops of thin films cannot be obtained even at the frequency of 50 kHz because of large leakage currents. It is noted that BFO-YMO thin films exhibit ferroelectricity considering the PFM and ferroelectric test. The magnetization measurements show that all BiFeO3-based films exhibit weak ferromagnetic behaviors with saturated magnetization at room temperature. The enhancement of magnetization was observed because of YMO doping, with the maximum saturation magnetization (M s) of 17.07 emu/cm3 in x=0.10 thin film.

MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2007 ◽  
Vol 21 (06) ◽  
pp. 931-945 ◽  
Author(s):  
K. SAMBASIVA RAO ◽  
P. MURALI KRISHNA ◽  
D. MADHAVA PRASAD ◽  
JOON HYUNG LEE

Ferroelectric, hysteresis, impedance spectroscopy parameters, AC conductivity, and piezoelectric properties in the ceramics of Pb 0.74 K 0.52 Nb 2 O 6 and Pb 0.74 K 0.13 Sm 0.13 Nb 2 O 6 have been studied. X-ray diffraction study reveals single phase with the orthorhombic structure. The samples were characterized for ferroelectric and impedance spectroscopy properties from room temperature to 600°C. Cole–Cole plots (Z″ versus Z′) are drawn at different temperatures. The results obtained are analyzed to understand the conductivity mechanism in both the samples. The piezoelectric constant d33 has been found to be 96 × 10-12 C/N in PKN.


1994 ◽  
Vol 361 ◽  
Author(s):  
Y. Liu ◽  
C.W. Ong ◽  
P.W. Chan ◽  
C.L. Choy

ABSTRACTStrontium barium niobate Sr0.55Ba0.45Nb2O6 thin films were prepared on Si (111) substrates by pulsed laser deposition (PLD). The film composition was determined as a function of the fluence φ and wavelength λ of the laser beam, the oxygen ambient pressure Po2 and the substrate temperature Ts. The results show that the film composition is very close to that of the target, and is almost independent of φ from 1 to 8 J cm−2, λ = 355, 532 and 1064 nm, Po2 from 0 to 150 mTorr, and Ts from 25 to 700°C. These results suggest that PLD is excellent for preparing SBN films with compositions congruent to that of the target. The x-ray diffraction data show that all the samples deposited at room temperature are amorphous. The x-ray diffraction results also indicate that the samples deposited at 700°C have a tungsten-bronze-(TB-) type structure with preferred crystallite orientation, while the room-temperature-deposited samples after annealing at 800°C for 30 minutes are polycrystalline and have random crystallite orientation.


2001 ◽  
Vol 688 ◽  
Author(s):  
M. A. McCormick ◽  
E. B. Slamovich ◽  
P. Metcalf ◽  
M. McElfresh

AbstractPolarization versus applied field (P-E) hysteresis loop measurements on Pb(Zr,Ti)O3 (PZT) thin films were performed using a controlled-atmosphere probe station. Measurements were made using two different capacitor configurations, each producing differing results. The capacitor configurations included using either the typical arrangement of two top electrodes (planar) or an arrangement using contacts to the top and the bottom electrodes (sandwich). The films included PZT films deposited using pulsed laser deposition (PLD) and commercially-available rfsputtered PZT thin films. Qualitatively similar results were obtained for both types of films. For both PLD and Ramtron PZT films, translation of ferroelectric hysteresis loops along the polarization axis was observed for sandwich capacitors. The magnitude of this voltage was strongly dependent on the partial pressure of oxygen at room temperature. Translations were not observed for the same films using the planar capacitor configuration. However, for both sandwich and planar configurations, the thin film capacitance was sensitive to changes in pO2.


2010 ◽  
Vol 49 (2) ◽  
pp. 020212 ◽  
Author(s):  
Kazushi Sumitani ◽  
Ryota Ohtani ◽  
Tomohiro Yoshida ◽  
You Nakagawa ◽  
Satoshi Mohri ◽  
...  

1995 ◽  
Vol 401 ◽  
Author(s):  
L.A. Knauss ◽  
J.M. Pond ◽  
J.S. Horwitz ◽  
C.H. Mueller ◽  
R.E. Treece ◽  
...  

AbstractThe effect of a post deposition anneal on the structure and dielectric properties of epitaxial Sr1−x, BaxTiO3 (SBT) thin films with x = 0.35, 0.50 and 0.60 has been measured. The films were grown by pulsed laser deposition on LaAlO3(001) substrates at 750°C in 350 mTorr of oxygen. The asdeposited films were single phase, (001) oriented with 0)-scan widths for the (002) reflection between 0.160 and 0.50'. The dielectric properties of the as-deposited films exhibit a broad temperature dependence and a peak which is as much as 50 K below the peak in bulk SBT. Also, the lattice parameter, as measured by x-ray diffraction, of the as-deposited films was larger than the bulk indicating strain in the films. The as-deposited films were annealed for 8 hours at 900°C in oxygen. The dielectric properties of the annealed films were closer to that of bulk SBT and the lattice parameter was closer to the bulk lattice parameter indicating a reduction of strain. Annealing of as-deposited films also resulted in an increased dielectric tuning without increased dielectric loss.


2020 ◽  
Vol 41 (10) ◽  
pp. 1170-1180
Author(s):  
Stefan Regensburger ◽  
Mahdad Mohammadi ◽  
Arslan A. Khawaja ◽  
Aldin Radetinac ◽  
Philipp Komissinskiy ◽  
...  

Abstract Strontium molybdate (SrMoO3) thin films are grown epitaxially by pulsed laser deposition onto gadolinium scandate (GdScO3) substrates and characterized in the terahertz (THz) and visible part of the electromagnetic spectrum. X-ray diffraction measurements prove a high crystallinity and phase-pure growth of the thin films. The high-quality SrMoO3 thin films feature a room temperature DC conductivity of around $3{\frac {1}{\mu {\Omega } m}}$ 3 1 μ Ω m . SrMoO3 is characterized in the THz frequency range by time domain spectroscopy. The resulting AC conductivity is in excellent agreement with the DC value. A Lorentz-Drude oscillator approach models the THz and visible conductivity of SrMoO3 very well. We compare the results of the SrMoO3 thin films to a standard, sputtered gold film, with a resulting THz conductivity of $8{\frac {1}{\mu {\Omega } m}}$ 8 1 μ Ω m . The comparison demonstrates that oxide thin film–based devices can play an important role in future THz technology.


2011 ◽  
Vol 399-401 ◽  
pp. 796-804
Author(s):  
Yun Yi Wu ◽  
Lei Wang ◽  
Zhi Qiang Hua ◽  
Tao Li ◽  
Xue Tao Yuan ◽  
...  

Pure, La3+doped at A site, V5+doped at B site, and La3+and V5+co-doped ferroelectric Bi4Ti3O12(BTO), Bi3.25La0.75Ti3O12(BLT), Bi4Ti2.98V0.02O3(BTV) and Bi3.25La0.75Ti2.98V0.02O12(BLTV) were successfully prepared by conventional sintering technique. The structures of the ceramics were investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. X-ray diffraction indicated that assemblages of all sintered ceramics consist of a single phase of Bi4Ti3O12, implying that the A-site La3+and B-site V5+substitutions in this case do not affect the layered structure. Among these ceramics, BLTV ceramic exhibited the best electrical properties. The leakage current density of BLTV ceramic was only 1.3×10-4Acm-2at 40 KVcm-1, two orders of magnitude lower than BTO ceramic. Besides, a saturated ferroelectric hysteresis loops with largest remnant polarization 2Pr of 30.6μC/cm2was observed for this sample. These suggested that the co-doped Bi4Ti3O12ceramic by La3+and V5+at A and B sites showed advantages in application over the pure BTO, doped BLT and BTV ceramic, respectively.


2014 ◽  
Vol 1082 ◽  
pp. 61-64
Author(s):  
Zheng Zheng Ma ◽  
Zi Peng Chen ◽  
Jian Qing Li ◽  
Hai Jun Huang

The solid solution ceramics of 0.9BiFeO3-0.1SrTiO3 (BFST) were processed under cool-high pressure (BFST-H1, BFST-H2) and high temperature-high pressure (BFST-H3). And the high pressure synthesis with different temperature was used to prepare the sample BFST-H4 and BFST-H5. X-ray diffraction showed that these ceramics are almost of single phase. Among all the samples, the 3GPa,900°C high pressure synthesized one shows the optimal ferroelectricity at room temperature, with enhanced magnetic properties was observed.


Sign in / Sign up

Export Citation Format

Share Document