Third Hankel determinants for two classes of analytic functions with real coefficients

2021 ◽  
Vol 33 (4) ◽  
pp. 973-986
Author(s):  
Young Jae Sim ◽  
Paweł Zaprawa

Abstract In recent years, the problem of estimating Hankel determinants has attracted the attention of many mathematicians. Their research have been focused mainly on deriving the bounds of H 2 , 2 {H_{2,2}} or H 3 , 1 {H_{3,1}} over different subclasses of 𝒮 {\mathcal{S}} . Only in a few papers third Hankel determinants for non-univalent functions were considered. In this paper, we consider two classes of analytic functions with real coefficients. The first one is the class 𝒯 {\mathcal{T}} of typically real functions. The second object of our interest is 𝒦 ℝ ⁢ ( i ) {\mathcal{K}_{\mathbb{R}}(i)} , the class of functions with real coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower and upper bounds of the third Hankel determinant. The results are sharp.

2021 ◽  
Vol 14 (1) ◽  
pp. 53-64
Author(s):  
Muhammad Ghaffar Khan ◽  
Bakhtiar Ahmad ◽  
Janusz Sokol ◽  
Zubair Muhammad ◽  
Wali Khan Mashwani ◽  
...  

The Hankel determinant for a function having power series was first defined by Pommerenke. The growth of Hankel determinant has been evaluated for different subcollections of univalent functions. Many subclasses with bounded turning are several interesting geometric properties. In this paper, some classes of functions with bounded turning which connect to the sine function are studied in the region of the unit disc in order. Our purpose is to obtain some upper bounds for the third and fourth Hankel determinants related to such classes.


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


1984 ◽  
Vol 30 (3) ◽  
pp. 395-410 ◽  
Author(s):  
V. V. Anh ◽  
P. D. Tuan

Let B be the class of functions ω(z) regular in |z| < 1 and satisfying ω(0) = 0, |ω(z)|<1 in |z|<1. We denote by P(A, B), −1 ≤ B < A ≤1, the class of functions p(z) = l+p1z+… regular in |z| < 1 and such that p(z) = [1+Aω(z)]/[1+Bω(z)] for some ω(z) ∈ Β. This paper establishes sharp lower and upper bounds on |z| = r<1 for the functionalwhere p(z) varies in P(A, B). The results are then used to study certain geometric properties of the corresponding class of meromorphic starlike univalent functions


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1199-1207 ◽  
Author(s):  
Ming Li

Even there were several facts to show that ||an+1(f)|-|an(f)|| ? 1 is not true for the whole class of normalised univalent functions in the unit disk with with the form f(z) = z + ??,k=2 akzk. In 1978, Leung[7] proved ||an+1(f)|-|an(f)|| is actually bounded by 1 for starlike functions and by this result it is easy to get the conclusion |an| ? n for starlike functions. Since ||an+1(f)|-|an(f)|| ? 1 implies the Bieberbach conjecture (now the de Brange theorem), so it is still interesting to investigate the bound of ||an+1(f)|-|an(f)|| for the class of spirallike functions as this class of functions is closely related to starlike functions. In this article we prove that this functional is bounded by 1 and equality occurs only for the starlike case. We are also able to give a precise form of extremal functions. Furthermore we also try to find the sharp bound of ||an+1(f)|-|an(f)|| for non-starlike spirallike functions. By using the Carath?odory-Toeplitz theorem, we obtain the sharp lower and upper bounds of |an+1(f)|-|an(f)| for n = 1 and n = 2. These results disprove the expected inequality ||an+1(f)|-|an(f)||? cos ? for ?-spirallike functions.


2021 ◽  
Vol 30 (1) ◽  
pp. 69-74
Author(s):  
SH. NAJAFZADEH ◽  
H. RAHMATAN ◽  
H. HAJI

By using subordination structure, a new subclass of convex functions is introduced. The estimate of the third Hankel determinants is also investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Sheng Liu ◽  
Jun-Feng Xu ◽  
Ming Yang

In this present investigation, we first give a survey of the work done so far in this area of Hankel determinant for univalent functions. Then the upper bounds of the second Hankel determinant|a2a4−a32|for functions belonging to the subclassesS(α,β),K(α,β),Ss∗(α,β), andKs(α,β)of analytic functions are studied. Some of the results, presented in this paper, would extend the corresponding results of earlier authors.


In this paper, we introduce some classes of analytic-univalent functions and for any real µ, determine the sharp upper bounds of the functional for the functions of the form k=2 belonging to such classes in the unit disc E = {z : |z| <1}


2019 ◽  
Vol 100 (1) ◽  
pp. 86-96 ◽  
Author(s):  
NAK EUN CHO ◽  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO

We apply the Schwarz lemma to find general formulas for the third coefficient of Carathéodory functions dependent on a parameter in the closed unit polydisk. Next we find sharp estimates of the Hankel determinant $H_{2,2}$ and Zalcman functional $J_{2,3}$ over the class ${\mathcal{C}}{\mathcal{V}}$ of analytic functions $f$ normalised such that $\text{Re}\{(1-z^{2})f^{\prime }(z)\}>0$ for $z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$, that is, the subclass of the class of functions convex in the direction of the imaginary axis.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Paweł Zaprawa

We discuss the Hankel determinantsH2(n)=anan+2-an+12for typically real functions, that is, analytic functions which satisfy the conditionIm ⁡z Im⁡f(z)≥0in the unit disk Δ. Main results are concerned withH2(2)andH2(3). The sharp upper and lower bounds are given. In general case, forn≥4, the results are not sharp. Moreover, we present some remarks connected with typically real odd functions.


2020 ◽  
Vol 70 (4) ◽  
pp. 829-838
Author(s):  
Saqib Hussain ◽  
Shahid Khan ◽  
Khalida Inayat Noor ◽  
Mohsan Raza

AbstractIn this paper, we are mainly interested to study the generalization of typically real functions in the unit disk. We study some coefficient inequalities concerning this class of functions. In particular, we find the Zalcman conjecture for generalized typically real functions.


Sign in / Sign up

Export Citation Format

Share Document