Identification and functional characterization of a sesquiterpene synthase gene from Eleutherococcus trifoliatus

Holzforschung ◽  
2012 ◽  
Vol 66 (2) ◽  
Author(s):  
Chi-Hsiang Wen ◽  
Yen-Hsueh Tseng ◽  
Fang-Hua Chu

Abstract In the present study, one sesquiterpene synthase gene in Eleutherococcus trifoliatus was identified and characterized. Full-length cDNA was obtained from stems. It contained an open reading frame of 1671 bp (EtCop) with a predicted molecular mass of 64.5 kDa. The amino acid sequence of EtCop contained the common terpene synthase family motifs RR(x)8W, RxR and DDxxD. The recombinant protein from Escherichia coli was incubated with farnesyl diphosphate in order to identify the function of EtCop. The product of EtCop could be identified as an α-copaene by means of gas chromatography-mass spectrometry analysis and comparison with an authentic standard.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Su-Fang Ee ◽  
Zeti-Azura Mohamed-Hussein ◽  
Roohaida Othman ◽  
Noor Azmi Shaharuddin ◽  
Ismanizan Ismail ◽  
...  

Polygonum minusis an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene fromP. minus.P. minussesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function ofPmSTS, we expressed this gene inArabidopsis thaliana. Two transgenic lines, designated asOE3andOE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production ofβ-sesquiphellandrene.


Holzforschung ◽  
2015 ◽  
Vol 69 (9) ◽  
pp. 1041-1048 ◽  
Author(s):  
Hui-Ling Hsieh ◽  
Li-Ting Ma ◽  
Sheng-Yang Wang ◽  
Fang-Hua Chu

Abstract Taiwania (Taiwania cryptomerioides Hayata) is a conifer species native to Taiwan, which is known for several bioactive secondary metabolites extracted from it. In this study, a sesquiterpene synthase (TPS) gene isolated from Taiwania was in focus. First, a pair of degenerate primers was designed for reverse transcription-polymerase chain reaction based on the total RNA extracted from the leaves of a mature tree. A DNA fragment with the conserved region of TPS gene was obtained. After 5′- and 3′-end amplification, the full-length gene was obtained, which contains an open reading frame of 1791 bp and encodes a predicted molecular mass of 70.2-kDa protein. The gene was highly expressed in young leaves, female flowers, and cones. The expression in leaves was enhanced by salicylic acid. To identify the function of TPS, the recombinant protein from Escherichia coli (Migula) Castellani & Chalmers was incubated with farnesyl diphosphate. Gas chromatography/mass spectrometry analysis and retention time as well as mass spectrum matching with authentic standards revealed that the major product of TPS is sesquiterpene α-gurjunene. The gene was, therefore, designated as Tc-Gur.


Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kuan-Feng Huang ◽  
Yi-Ru Lee ◽  
Yen-Hsueh Tseng ◽  
Sheng-Yang Wang ◽  
Fang-Hua Chu

AbstractEleutherococcus trifoliatusalso known as the three-leavedEleutherococcus, a member of the Araliaceae (ginseng) family, is commonly used in traditional Chinese medicine. Recently, many studies have demonstrated the bioactivities of the secondary metabolites inE. trifoliatus. In this study, a monoterpene synthase fromE. trifoliatushas been characterized. A pair of degenerate primers was designed and a fragment with conserved region of terpene synthase (TPS) was obtained. After 5′- and 3′-rapid amplification of cDNA ends (RACE), the full-length cDNA was obtained. The gene designatedEtLIMcontains an open reading frame of 1752 bp with a predicated molecular mass of 67.3 kDa. It was expressed in young leaves, stems, and drupes. The product ofEtLIMhas been identified by gas chromatography/mass spectrometry (GC/MS) as limonene.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katarzyna Kozłowicz ◽  
Renata Różyło ◽  
Bożena Gładyszewska ◽  
Arkadiusz Matwijczuk ◽  
Grzegorz Gładyszewski ◽  
...  

Abstract This work aimed at the chemical and structural characterization of powders obtained from chestnut flower honey (HFCh) and honey with Inca berry (HBlu). Honey powders were obtained by spray drying technique at low temperature (80/50 °C) with dehumidified air. Maltodextrin (DE 15) was used as a covering agent. The isolation and evaluation of phenolic compounds and sugars were done by gas chromatography–mass spectrometry analysis. Scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction were performed to determine the morphology of the studied honey powders. The obtained results showed that the content of simple sugars amounted to 72.4 and 90.2 g × 100 g−1 in HFCh and HBlu, respectively. Glucose was found to be the dominant sugar with a concentration of 41.3 and 51.6 g × 100 g−1 in HFCh and HBlu, respectively. 3-Phenyllactic acid and ferulic acid were most frequently found in HFCh powder, whereas m-coumaric acid, benzoic acid, and cinnamic acid were the most common in HBlu powder. The largest changes in the FTIR spectra occurred in the following range of wavenumbers: 3335, 1640, and below 930 cm−1. The X-ray diffraction profiles revealed wide peaks, suggesting that both honey powders are amorphous and are characterized by a short-range order only.


2018 ◽  
Author(s):  
Rahul Salunke ◽  
Tobias Mourier ◽  
Manidipa Banerjee ◽  
Arnab Pain ◽  
Dhanasekaran Shanmugam

AbstractThe mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (~600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Roberta Iacono ◽  
Andrea Strazzulli ◽  
Luisa Maurelli ◽  
Nicola Curci ◽  
Angela Casillo ◽  
...  

ABSTRACTSulfolobus solfataricusis an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group ofSulfolobales,N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of theN-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood inArchaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening ofS. solfataricusextracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified inArchaea. Mass spectrometry analysis of the purified activity showed a protein encoded by thesso2901gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed inS. solfataricusextracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream ofsso2901(sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism inS. solfataricus.IMPORTANCEIn this study, a preliminary screening of cellular extracts ofS. solfataricusallowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism ofArchaea.


2021 ◽  
Vol 12 (5) ◽  
pp. 45-48
Author(s):  
Sonia Mol Joseph ◽  
Amala Dev A R

The volatile chemical composition of leaf essential oils of three Annona species (Annona cherimola, Annona muricata and Annona squamosa) from the different regions of Kerala, South Indian was determined using gas chromatography-mass spectrometry analysis. A total of 41 constituents belonging to monoterpenoids, sesquiterpenoids and diterpenoids were identified. Monoterpenes and sesquiterpenoids were the major class of volatile compounds in most of the Annona species examined. The study led to the identification of major compounds as germacrene D (23.5%), bicyclogermacrene (14.6%) and β-caryophyllene (11.7%) in A. cherimola, α-pinene (13.3%), β-caryophyllene (11.2%) and β-pinene (10.1%) in A. muricata, and β-caryophyllene (11.9%) and α-pinene (8.2%) in A. squamosa respectively. The examined essential oils showed that β-caryophyllene is the common constituent identified in all the three species and other constituents are more specific for each species under study. Present investigation reports, a comparison of essential oil compositions of three Annona species from Kerala. Results of this study prove that essential oils examined have considerable dissimilarity in chemical composition with previously reported leaf essential oil compositions from other regions. A chemotaxonomic analysis of these essential oils based on the distribution of compounds has revealed an efficient method to differentiate Annona species unambiguously.


Sign in / Sign up

Export Citation Format

Share Document