scholarly journals Septin functions in organ system physiology and pathology

2014 ◽  
Vol 395 (2) ◽  
pp. 123-141 ◽  
Author(s):  
Lee Dolat ◽  
Qicong Hu ◽  
Elias T. Spiliotis

Abstract Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.

<em>Abstract</em>.—Fish embryos and larvae are developing, not static, organisms before metamorphosis or transformation to the juvenile form. The means by which embryos and larvae meet physiological challenges posed by their environments and the extent to which evolution shapes the outcome of development is only partially understood. An understanding of these issues can only be approached by coupling the development of form and function over the broad phylogenetic span of fishes. Much work has come forward that describes the development of body form and organ systems, while equally valuable, but often separate, work has emerged that describes the physiology of embryos and larvae. Far fewer composite studies that couple developing form with function are available, and fewer yet have addressed such questions as when, and in what capacity, do developing organs or organ systems function. The evolutionary question also requires a phylogenetic perspective. The reviews that follow this introduction will present current thought that reflects upon the following questions: (1) when is the onset of organ (or organ system) development, and in what physiological capacity do these systems operate among fish embryos and larvae; and (2) are there morphological and physiological specializations that are unique to embryonic and larval fishes, and what are these specializations?


2021 ◽  
Vol 8 ◽  
Author(s):  
Simona Pompili ◽  
Giovanni Latella ◽  
Eugenio Gaudio ◽  
Roberta Sferra ◽  
Antonella Vetuschi

The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.


2020 ◽  
Vol 27 (31) ◽  
pp. 5159-5174 ◽  
Author(s):  
Xinjie Lu

Background:Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism.Method:A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis.Results:Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects.Conclusion:ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.


1991 ◽  
Vol 266 (20) ◽  
pp. 13130-13134
Author(s):  
H.J. Wu ◽  
D.J. Rozansky ◽  
R.J. Parmer ◽  
B.M. Gill ◽  
D.T. O'Connor

2013 ◽  
Vol 394 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Mamta Jaiswal ◽  
Eyad Kalawy Fansa ◽  
Radovan Dvorsky ◽  
Mohammad Reza Ahmadian

Abstract Major advances have been made in understanding the structure, function and regulation of the small GTP-binding proteins of the Rho family and their involvement in multiple cellular process and disorders. However, intrinsic nucleotide exchange and hydrolysis reactions, which are known to be fundamental to Rho family proteins, have been partially investigated in the case of RhoA, Rac1 and Cdc42, but for others not at all. Here we present a comprehensive and quantitative analysis of the molecular switch functions of 15 members of the Rho family that enabled us to propose an active GTP-bound state for the rather uncharacterized isoforms RhoD and Rif under equilibrium and quiescent conditions.


1991 ◽  
Vol 266 (24) ◽  
pp. 15949-15955
Author(s):  
T.W. Gettys ◽  
V. Ramkumar ◽  
R.J. Uhing ◽  
L. Seger ◽  
I.L. Taylor

2006 ◽  
Vol 26 (11) ◽  
pp. 4111-4121 ◽  
Author(s):  
Mohamad Zubair ◽  
Satoru Ishihara ◽  
Sanae Oka ◽  
Katsuzumi Okumura ◽  
Ken-ichirou Morohashi

ABSTRACT The orphan nuclear receptor Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1) is essential for the proper development and function of reproductive and steroidogenic tissues. Although the expression of Ad4BP/SF-1 is specific for those tissues, the mechanisms underlying this tissue-specific expression remain unknown. In this study, we used transgenic mouse assays to examine the regulation of the tissue-specific expression of Ad4BP/SF-1. An investigation of the entire Ad4BP/SF-1 gene locus revealed a fetal adrenal enhancer (FAdE) in intron 4 containing highly conserved binding sites for Pbx-Prep, Pbx-Hox, and Ad4BP/SF-1. Transgenic assays revealed that the Ad4 sites, together with Ad4BP/SF-1, develop an autoregulatory loop and thereby maintain transcription, while the Pbx/Prep and Pbx/Hox sites initiate transcription prior to the establishment of the autoregulatory loop. Indeed, a limited number of Hox family members were found to be expressed in the adrenal primordia. Whether a true fetal-type adrenal cortex is present in mice remained controversial, and this argument was complicated by the postnatal development of the so-called X zone. Using transgenic mice with lacZ driven by the FAdE, we clearly identified a fetal adrenal cortex in mice, and the X zone is the fetal adrenal cells accumulated at the juxtamedullary region after birth.


Author(s):  
Swee-Suak Ko ◽  
Min-Jeng Li ◽  
Yi-Cheng Ho ◽  
Chun-Ping Yu ◽  
Ting-Ting Yang ◽  
...  

Abstract GAMYB, UDT1, TIP2/bHLH142, TDR, and EAT1/DTD are important transcription factors (TFs) that play a crucial role during rice pollen development. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a “hub” in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of bHLH142 promoter during early stage of pollen development; while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. The altered expression of TFs highlights the importance that a tight, precise, and coordinated regulation among these TFs is essential for normal pollen development. Most notably, this study illustrates the regulatory pathways of GAMYB and UDT1 that rely on bHLH142 in a direct and an indirect manner, respectively, and function in different tissues with distinct biological functions during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (01) ◽  
pp. 5-22
Author(s):  
K Challabotla ◽  
◽  
D Banji ◽  
O.J.F Banji ◽  
Chilipi K Reddy

Ageing is a natural process characterized by progressive deterioration of biological functions. Ageing causes both morphological as well as biochemical alterations in various body organs leading to deterioration of health. Proteins, enzymes and neurotransmitters are affected, which in turn can result in dysregulation of various pathways. WHO has reported that by 2020, three quarters of all deaths in developing countries will be age-associated. Currently more than 300 theories exist to explain the phenomenon of ageing; amongst them the oxidative stress theory of ageing is most studied and accepted for the molecular basis of ageing. All these processes can progress at an unprecedented pace on contact with triggering factors, leading to the development of pathological ageing. The probability of developing neurodegenerative and metabolic disorders is relatively high under such circumstances. This review emphasizes the theories and mechanisms of ageing and an overview on the aspects of age associated biochemical changes and the implications on the brain, liver and various organ systems.


Sign in / Sign up

Export Citation Format

Share Document