rho family
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 88)

H-INDEX

105
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Raphael Dima ◽  
Marianne Bah Tahe ◽  
Yann A Chabi ◽  
Lise Rivollet ◽  
Anthony F Arena ◽  
...  

The establishment of complex cell shapes is essential for specific cellular functions, and thus critical in animal development and physiology. Heparan sulfate proteoglycans (HSPGs) are conserved glycoproteins that regulate interactions between extracellular signals and their receptors, to orchestrate morphogenetic events and elicit cellular responses. Although HSPG-regulated pathways have been implicated in regulating the guidance of neuronal migrations, whether HSPGs regulate earlier aspects of cellular development that dictate cell shape remains unknown. HSPGs consist of a protein core (e.g., Syndecan, Perlecan, Glypican, etc.) with attached heparan sulfate (HS) glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin family. Using mutations in the two C. elegans HS glycosyltransferases genes, rib-1 and rib-2, we reveal that HSPGs control the number of cellular projections in the epithelial excretory canal cell, which can form more than its normal four canals in these mutants. We identify SDN-1/Syndecan as the key HSPG that regulates the number of excretory canal cell projections in a cell-autonomous manner. We also find that Syndecan and guidance receptors for Netrin function in the same pathway to restrict the number of cellular projections. Furthermore, we show that the formation of extra projections in the absence of Syndecan requires the conserved Rho-family GTPases CED-10/Rac and MIG-2/RhoG. Our findings not only contribute to understanding the roles of conserved HSPGs in cellular morphogenetic events, but also reveal the existence of an HSPG-regulated system operating to guarantee that a precise number of cellular projections is established during cell development. Given the evolutionary conservation of developmental mechanisms and the molecules implicated, this work provides information relevant to understanding the cellular and molecular bases of the development of precise cellular morphologies in varied cell types across animals.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Peilong Dong ◽  
Xiaobo Tang ◽  
Jian Wang ◽  
Botao Zhu ◽  
Zhiyun Li

Abstract Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Several studies reported that fibroblast-like synoviocytes (FLSs) and miRNAs are associated with RA pathogenesis. This study explored the function of miR-653-5p in the regulation of human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cells. Methods The mRNA and protein levels of genes were measured by RT-qPCR and western blot, respectively. MTT, wound healing, and invasion assays were used to evaluate the viability and metastasis of FLSs. Luciferase reporter and RNA pull-down assays were employed to determine the interaction between miR-653-5p and FGF2. Results RT-qPCR results demonstrated that miR-653-5p expression was decreased and FGF2 level was increased in synovial tissues and FLSs of RA. Moreover, the viability and metastasis of FLSs were accelerated by miR-653-5p addition, which was restrained by miR-653-5p suppression. Furthermore, we demonstrated that levels of Rac1, Cdc42, and RhoA were decreased after miR-653-5p addition. Besides, luciferase reporter and RNA pull-down assays implied that miR-653-5p targeted the 3′-UTR of FGF2. Functional assays showed that FGF2 overexpression neutralized the suppressive effects of miR-653-5p addition on HFLS-RA cell viability, metastasis, and the levels of Rho family proteins. Meanwhile, the levels of β-catenin, cyclin D1, and c-myc were declined by miR-653-5p supplementation, but enhanced by FGF2 addition. Conclusion In sum, we manifested that miR-653-5p restrained HFLS-RA cell viability and metastasis via targeting FGF2 and repressing the Wnt/beta-Catenin pathway.


Author(s):  
Erin E. Berlew ◽  
Keisuke Yamada ◽  
Ivan A. Kuznetsov ◽  
Eleanor A. Rand ◽  
Chandler C. Ochs ◽  
...  

2022 ◽  
Vol 18 (2) ◽  
pp. 800-808
Author(s):  
Zeheng Lv ◽  
Yan Ding ◽  
Wenxin Cao ◽  
Shuyun Wang ◽  
Kun Gao

2021 ◽  
Author(s):  
Masashi Nishikawa ◽  
Hidenori Ito ◽  
Mariko Noda ◽  
Nanako Hamada ◽  
Hidenori Tabata ◽  
...  

Rac3 is a member of Rho family small GTPases which regulates cellular signaling and cytoskeletal dynamics. The RAC3 gene abnormalities have been shown to cause neurodevelopmental disorders with structural brain anomalies, including polymicrogyria/dysgyria, callosal abnormalities, brainstem anomalies, and cerebellar dysplasia. Although this evidence indicates that Rac3 is essential in brain development, not only its molecular mechanism but also the expression profile is yet to be elucidated. In this study, we carried out expression analyses of Rac3 with mouse brain tissues. In immunoblotting, Rac3 exhibited a tissue-dependent expression profile in the young adult mouse and was expressed in a developmental stage-dependent manner in brain. In primary cultured hippocampal neurons, while Rac3 was distributed mainly in the cytoplasm, it was visualized in axon and dendrites with partial localization at synapses, in consistent with the observation in biochemical fractionation analyses. In immunofluorescence analyses with brain slices, Rac3 was distributed strongly and moderately in the axon and cytoplasm, respectively, of cerebral cortex at postnatal day (P) 2 and P18. Similar distribution profile was also observed in hippocampus. Taken together, the results obtained strongly suggest that Rac3 plays an important physiological role in neuronal tissues during corticogenesis, and defects in the Rac3 function induce structural brain anomalies leading to pathogenesis of neurodevelopmental disorders.


2021 ◽  
Vol 22 (22) ◽  
pp. 12493
Author(s):  
Niloufar Mosaddeghzadeh ◽  
Neda S. Kazemein Jasemi ◽  
Jisca Majolée ◽  
Si-Cai Zhang ◽  
Peter L. Hordijk ◽  
...  

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5632
Author(s):  
Geoffrey O. Nyabuto ◽  
John P. Wilson ◽  
Samantha A. Heilman ◽  
Ryan C. Kalb ◽  
Jonathan P. Kopacz ◽  
...  

Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 43,000 women will die of breast cancer in 2021. To lower this number, more information about the molecular players in breast cancer are needed. Guanylate-Binding Protein-2 has been correlated with better prognosis in breast cancer. In this study, we asked if the expression of GBP-2 in breast cancer merely provided a biomarker for improved prognosis or whether it actually contributed to improving outcome. To answer this, the 4T1 model of murine breast cancer was used. 4T1 cells themselves are highly aggressive and highly metastatic, while 67NR cells, isolated from the same tumor, do not leave the primary site. The expression of GBP-2 was examined in the two cell lines and found to be inversely correlated with aggressiveness/metastasis. Proliferation, migration, and invadosome formation were analyzed after altering the expression levels of GBP-2. Our experiments show that GBP-2 does not alter the proliferation of these cells but inhibits migration and invadosome formation downstream of regulation of Rho GTPases. Together these data demonstrate that GBP-2 is responsible for cell autonomous activities that make breast cancer cells less aggressive.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1554
Author(s):  
Paula Colón-Bolea ◽  
Rocío García-Gómez ◽  
Berta Casar

Metastasis is a complex process by which cancer cells escape from the primary tumor to colonize distant organs. RAC1 is a member of the RHO family of small guanosine triphosphatases that plays an important role in cancer migration, invasion, angiogenesis and metastasis. RAC1 activation has been related to most cancers, such as cutaneous melanoma, breast, lung, and pancreatic cancer. RAC1P29S driver mutation appears in a significant number of cutaneous melanoma cases. Likewise, RAC1 is overexpressed or hyperactivated via signaling through oncogenic cell surface receptors. Thus, targeting RAC1 represents a promising strategy for cutaneous melanoma therapy, as well as for inhibition of other signaling activation that promotes resistance to targeted therapies. In this review, we focus on the role of RAC1 in metastatic cutaneous melanoma emphasizing the anti-metastatic potential of RAC1- targeting drugs.


2021 ◽  
pp. mbc.E21-01-0010
Author(s):  
Kang Na ◽  
Tsubasa S. Matsui ◽  
Liu Shiyou ◽  
Shinji Deguchi

The Rho family of GTPases are inactivated in a cell context-dependent manner by Rho-GTPase-activating proteins (Rho-GAPs), but their signaling mechanisms are poorly understood. Here we demonstrate that ARHGAP4, the Rho-GAPs, forms a complex with SEPT2 and SEPT9 via its Rho-GAP domain and SH3 domain to enable both up- and down-modulation of integrin-mediated focal adhesions (FAs). We show that silencing ARHGAP4 as well as overexpressing its two mutually independent upstream regulators SEPT2 and SEPT9 all induce reorganization of FAs to newly express Integrin Beta 1 and also enhance both cell migration and invasion. Interestingly, even if these cell migration/invasion-associated phenotypic changes are induced upon perturbations to the complex, it does not necessarily cause enhanced clustering of FAs. Instead, its extent depends on whether the microenvironment contains ligands suitable for the upregulated Integrin Beta 1. These results provide novel insights to cell migration, invasion, and microenvironment-dependent phenotypic changes regulated by the newly identified complex.


2021 ◽  
Vol 118 (37) ◽  
pp. e2108094118
Author(s):  
Zhihui Fong ◽  
Caoimhín S. Griffin ◽  
Roddy J. Large ◽  
Mark A. Hollywood ◽  
Keith D. Thornbury ◽  
...  

P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.


Sign in / Sign up

Export Citation Format

Share Document