The Mechanical Properties of the Mo-0.5Ti and Mo-0.1Zr Alloys at Room Temperature and High Temperature Annealing

2017 ◽  
Vol 36 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Chaopeng Cui ◽  
Yimin Gao ◽  
Shizhong Wei ◽  
Guoshang Zhang ◽  
Yucheng Zhou ◽  
...  

AbstractMo-0.5Ti and Mo-0.1Zr alloys were prepared by powder metallurgy. In Mo-0.5Ti and Mo-0.1Zr alloys, there appears the second-phase particles of Ti2O3 and ZrO2 respectively, each of which can effectively prevent the dislocation activity in the process of plastic deformation. The addition of Zr can increase the strength of molybdenum alloys. Meanwhile, the ZrO2 formed from the alloy element Zr can refine the grains of molybdenum alloys to improve the recrystallization plasticity. After annealing, the tensile strength decreases while the plasticity greatly increases compared to the annealed Mo-0.5Ti and Mo-0.1Zr alloys. With the increase of annealing temperature, both the tensile strength and plasticity of Mo-0.5Ti and Mo-0.1Zr alloys decrease. Compared with pure Mo, after annealing the properties of the Mo-0.5Ti alloy and the plasticity of the Mo-0.1Zr alloy significantly increases.

2011 ◽  
Vol 291-294 ◽  
pp. 1082-1086
Author(s):  
Yao Jin Wu ◽  
Zhi Ming Zhang ◽  
Bao Cheng Li ◽  
Bao Hong Zhang ◽  
Jian Min Yu ◽  
...  

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperature (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure changes of AZ80 magnesium alloy have been investigated through tensile test and via ZEISS digital metallographic microscope observation. Research indicates that the alloy’s plasticity gradually decreases as the temperature increases, and that the alloy’s tensile strength varies with the extrusion ratio. At 330°C, the alloy’s particle grain is small and a small amount of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390 Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, both the tensile strength and plasticity increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2010 ◽  
Vol 139-141 ◽  
pp. 180-184
Author(s):  
Yong Xue ◽  
Zhi Min Zhang ◽  
Li Hui Lang

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperatures (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure of homogenized AZ80 alloy have been investigated through the tensile tests and via metallographic microscope observation. The results show that the alloy’s grain is small and small amounts of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength at 330°C. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, the tensile strength increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


2015 ◽  
Vol 817 ◽  
pp. 283-287
Author(s):  
Jing Fan Hua ◽  
Ren Bo Song ◽  
San Chuan Yu ◽  
Zhe Gao ◽  
Wei Jie Wanglin

The effect of annealing temperature on microstructures and mechanical properties of 1000MPa grade cold rolling steel was studied under the condition of ultra-fast cooling in the present investigation. The component of the experimental steel has been designed and the carbon content is 0.13%[wt]. A small amount of V and Nb were added to the steel. Simulated annealing steel experiment has been carried out in the laboratory condition. The experimental steel was heated to 780°C, 800°C, 820°C, 840°C, 860°C for 80s, then slowly cooled to 680°C, and finally water quenched to room temperature. The aging temperature was 240°C(for 240s) and then the steel was air cooled to room temperature. Using optical microscope, scanning electron microscopy (SEM) and tensile testing machine to analyze and test the microstructures and properties of the steel after annealing process. The result showed that the microstructures of the annealed steel was martensite and ferrite, and when the annealing temperature was 820°C, the tensile strength could reach 999MPa, elongation could reach 13.3%. It was easy to see that the tensile strength increased and the elongation decreased with the increase of annealing temperature.


Author(s):  
Zhenjiang Li ◽  
Yujing Liu ◽  
Pengju Jia ◽  
Chao Luo ◽  
Ruyi Zhang ◽  
...  

Microstructure and mechanical properties of medium-Mn steel (Fe–0.14C–5Mn–1Al–Ce) processed by different austenite reverted transformation-annealing temperatures vary from 580 °C to 740 °C were studied. It was found that the austenite reverted transformation-annealing temperature has a strong effect on microstructure evolution. The martensite structure was transformed into austenite by austenite reverted transformation during the austenite reverted transformation-annealing process. The orientation relationship between the austenite and the matrix was dominated by the Kennicutt–Schmidt relation. With the increase of the austenite reverted transformation-annealing temperature, the content of retained austenite first increases and then decreases at room temperature. The tensile strength first decreases and then increases, while the elongation first increases and then decreases. An excellent combination of tensile strength and elongation (Rm × A) was obtained in the Fe–0.14C–5Mn–1Al–Ce steel by austenite reverted transformation-annealing at 640 °C.


2007 ◽  
Vol 561-565 ◽  
pp. 399-402 ◽  
Author(s):  
J. Machida ◽  
Satoru Kobayashi ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

Mechanical properties of thermomechanically fabricated D03 Fe-33Al and B2 Fe-38Al intermetallic alloys containing Zr were investigated by means of tensile test and microhardness measurement. The Zr-added ternary alloys showed fine-grained microstructure containing large (Fe,Al)12Zr τ1 phase particles, while the binary alloy showed a single-phase microstructure consisted of coarse recrystallized grains. By introducing the large τ1 phase particles to Fe-Al matrix, tensile strength at room temperature as well as at high temperature (873K) was enhanced but tensile ductility at both temperatures decreased. On the other hand, it was found that vacancy hardening which was significant in the alloys with high contents of Al (i.e., Fe-38Al) was reduced by the large τ1 phase particles.


2011 ◽  
Vol 686 ◽  
pp. 361-366
Author(s):  
Yong Li ◽  
Zhi Min Zhang ◽  
Yong Xue ◽  
Li Li

The forward extrusion experiments of homogenized AZ80 magnesium alloy were conducted in the extrusion temperature range of 300°C to 420°C and extrusion ratios between 15 and 75 to study the effect of plastic deformation on the mechanical properties and microstructure. The microstructure and mechanical properties of extrudate were measured by tensile tests and optical microscopy. The results demonstrated that the alloy grains were small, and small amounts of black hard and brittle second-phase precipitated at 330°C. When the extrusion temperature was up to 390°C, the grain size increased significantly, but the second phase precipitation became continuous. And then, in the case of the extrusion ratio of 60, the tensile strength of the alloy reached the peak value of 390 MPa. Inhomogeneous precipitation of the second-phase increased with the increasing of extrusion temperature. At the same temperature, the tensile strength increased firstly and then decreased with increasing extrusion ratio. With the gradual increase of the grain refinement, the dispersed precipitates increased and the tensile strength and plasticity reached their peaks when the extrusion temperature was 390°C. As the grain grew, the second phase distribution became inhomogeneous, and the strength and plasticity gradually decreased.


2013 ◽  
Vol 785-786 ◽  
pp. 76-80
Author(s):  
Hui Chao Cheng ◽  
Jing Lian Fan ◽  
Zhao Qian ◽  
Jia Min Tian

The present study describes the effect of trace ZrC additive on the microstructure and properties of Mo-Ti-Zr alloy fabricated by powder metallurgy method. The results indicate that, ZrC addition effectively enhanced the tensile strength of the alloy both at room-temperature and high-temperature, the alloy with 0.4wt% ZrC has the highest tensile strength, which is 611MPa and 513MPa at 25°C and 800°C, respectively. The tensile fracture mainly consists of intergranular rupture at room temperature, while dimple fracture occurred at high temperature, which indicating higher elongation. Through observation from the micrograph and EDS analysis, ZrxOyCz second-phase particles were observed,which is derived from part of ZrC particles reacted with the oxygen and can suppress the oxygen segregation on grain boundary.


2019 ◽  
Vol 8 (2) ◽  
pp. 1 ◽  
Author(s):  
Amin Azimi ◽  
Gbadebo Moses Owolabi ◽  
Hamid Fallahdoost ◽  
Nikhil Kumar ◽  
Horace Whitworth ◽  
...  

This paper presents the microstructure and the mechanical behavior of nanocrystalline AA2219 processed by multi axial forging (MAF) at ambient and cryogenic temperatures. The X-ray diffraction pattern and transmission electron microscopy micrographs in the initial microstructure characterization indicate a more effective severe plastic deformation during the cryogenic MAF than the same process conducted at room temperature. MAF at cryogenic temperature results in crystallite size reduction to nanoscales as well as second phase particles breakage to finer particles which are the crucial factors to increasing the mechanical properties of the material. Fractography analysis and tensile tests results show that cryogenic forging does not only increase the mechanical strength and toughness of the alloys significantly, but also improves the ductility of the material in comparison with the conventional forging. In this comparative regard, cryogenic processing provides 44% increase in the tensile strength of the material only after 2 forging cycles when compared to the room temperature process. In addition, further forging process to the next cycles slightly enhances the tensile strength at the expense of ductility due to less ability of the dislocations to accumulate. However, the ductility of the ambient temperature forged samples decreases at a faster rate than that of cryoforged samples.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


1997 ◽  
Vol 12 (4) ◽  
pp. 1091-1101 ◽  
Author(s):  
Seunggu Kang ◽  
Hongy Lin ◽  
Delbert E. Day ◽  
James O. Stoffer

The dependence of the optical and mechanical properties of optically transparent polymethyl methacrylate (PMMA) composites on the annealing temperature of BK10 glass fibers was investigated. Annealing was used to modify the refractive index (R.I.) of the glass fiber so that it would more closely match that of PMMA. Annealing increased the refractive index of the fibers and narrowed the distribution of refractive index of the fibers, but lowered their mechanical strength so the mechanical properties of composites reinforced with annealed fibers were not as good as for composites containing as-pulled (chilled) glass fibers. The refractive index of as-pulled 17.1 μm diameter fibers (R.I. = 1.4907) increased to 1.4918 and 1.4948 after annealing at 350 °C to 500 °C for 1 h or 0.5 h, respectively. The refractive index of glass fibers annealed at 400 °C/1 h best matched that of PMMA at 589.3 nm and 25 °C, so the composite reinforced with those fibers had the highest optical transmission. Because annealed glass fibers had a more uniform refractive index than unannealed fibers, the composites made with annealed fibers had a higher optical transmission. The mechanical strength of annealed fiber/PMMA composites decreased as the fiber annealing temperature increased. A composite containing fibers annealed at 450 °C/1 h had a tensile strength 26% lower than that of a composite made with as-pulled fibers, but 73% higher than that for unreinforced PMMA. This decrease was avoided by treating annealed fibers with HF. Composites made with annealed and HF (10 vol. %)-treated (for 30 s) glass fibers had a tensile strength (∼200 MPa) equivalent to that of the composites made with as-pulled fibers. However, as the treatment time in HF increased, the tensile strength of the composites decreased because of a significant reduction in diameter of the glass fiber which reduced the volume percent fiber in the composite.


Sign in / Sign up

Export Citation Format

Share Document