Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to Nitinol NiTi alloy by laser welding

Author(s):  
Yan Zhang ◽  
DeShui Yu ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Zhang ◽  
YanKun Chen ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

AbstractIn this paper, laser welding-brazing of TC4 Titanium (Ti) alloy and Al2O3 ceramic dissimilar material was carried. The results showed that the Ti alloy and Al2O3 were joined by melting filler metal when the laser was concentrated in the Ti alloy side of the joint. The joint with one fusion weld and one brazed weld separated by remaining unmelted Ti alloy. Laser beam offset the Ti alloy 1.5 mm, Ti alloy would not be completely melted in joint. Through heat conduction, the filler metal melted occurred at the Ti-ceramic interface. A brazed weld was formed at the Ti-ceramic interface with the main microstructure of β-CuZn + Ti2Zn3, β-CuZn and Al2Cu + β-CuZn. The joint fractured at the brazed weld with the maximum tensile strength of 169 MPa.


2008 ◽  
Vol 580-582 ◽  
pp. 479-482 ◽  
Author(s):  
Yuji Sakai ◽  
Kazuhiro Nakata ◽  
Takuya Tsumura ◽  
Mitsuji Ueda ◽  
Tomoyuki Ueyama ◽  
...  

Noncombustible magnesium alloy AMC602 (Mg-6mass%Al-2mass%Ca) extruded sheet of 2.0mm thickness was successfully welded using a fiber laser welding process at welding speed of 10m/min at 3kW laser power. Tensile strength of the welded joint was about 82 to 88% of that of the base metal. Vickers hardness, tensile strength and micro structural properties are also discussed.


Author(s):  
Renangi Sandeep ◽  
Arivazhagan Natarajan

In the twenty-first century, the application of carbon fiber reinforced polymer (CFRP) materials in the vehicle industry are growing rapidly due to lightweight, high specific strength, and elasticity. In the automobile and aerospace industries, CFRP needs to be joined with metals to build complete structures. The demand for hybrid structures has prompted research into the combination of CFRP and metals in manufacturing. Aluminium and CFRP structures combine the mechanical properties of aluminium with the superior physical and chemical properties of CFRP. However, joining dissimilar materials is often challenging to achieve. Various joining technologies are developed to produce hybrid joints of CFRP, and aluminium alloys include conventional adhesives, mechanical and thermal joining technologies. In this review article, an extensive review was carried out on the thermal joining technologies include laser welding, friction-based welding technologies, ultrasonic welding, and induction welding processes. The article primarily focused on the current knowledge and process development of these technologies in fabricating dissimilar aluminium and CFRP structures. Besides, according to Industry 4.0 requirements, additive manufacturing-based techniques to fabricate hybrid structures are presented. Finally, this article also addressed the various improvements for the future development of these joining technologies. Ultrasonic welding yields the maximum shear strength among the various hybrid joining technologies due to lower heat input. On the other hand, laser welding produces higher heat input, which deteriorates the mechanical performance of the hybrid joints. Surface pretreatments on material surfaces prior to joining showed a significant effect on joint shear strength. Surface modification using anodizing is considered an optimal method to improve wettability, increasing mechanical interlocking phenomena.


2021 ◽  
Vol 39 (4) ◽  
pp. 1100-1107
Author(s):  
N.S. Akonyi ◽  
O.A. Olugboji ◽  
E.A.P. Egbe ◽  
O. Adedipe ◽  
S.A. Lawal

Girth welded replica of API X70M material have been produced on NG-GMAW welding technique. The particular area of interest is to develop suitable girth welding process parameter using NGGMAW. The major aim of the work was to replicate welds having tensile strength between 650 and 680 MPa. Design of Experiment (DoE) method by Taguchi design, using some selected welding processes was adopted. Two process parameters (factors) – arc voltage and wire feed rate, (the variables), and three levels were used. The resultant joint property on tensile strength of X70M pipeline was examined. The targeted mechanical property was achieved by selecting the best process parameters. Their effects on ultimate tensile strength – UTS was analysed using statistical technique – analysis of variance - ANOVA and Signal to Noise - S/N ratio with ‘thebigger-the–better’ value. Validation was done using MIDAS NFX (an FEA) mechanical engineering software. In conclusion, process parameters that affects or influences the girth welded properties of API X70M under field conditions were identified. Guidance for the specifications and selection of processes that could be used in field-welding for optimum performance has been recommended. Keywords: Optimization, Girth-Weld, Process Parameters, Tensile Strength, NG-GMAW


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4157 ◽  
Author(s):  
Isidro Guzmán ◽  
Everardo Granda ◽  
Jorge Acevedo ◽  
Antonia Martínez ◽  
Yuliana Dávila ◽  
...  

Precipitation hardening aluminum alloys are used in many industries due to their excellent mechanical properties, including good weldability. During a welding process, the tensile strength of the joint is critical to appropriately exploit the original properties of the material. The welding processes are still under study, and gas metal arc welding (GMAW) in pulsed metal-transfer configuration is one of the best choices to join these alloys. In this study, the welding of 6061 aluminum alloy by pulsed GMAW was performed under two heat treatment conditions and by using two filler metals, namely: ER 4043 (AlSi5) and ER 4553 (AlMg5Cr). A solubilization heat treatment T4 was used to dissolve the precipitates of β”- phase into the aluminum matrix from the original T6 heat treatment, leading in the formation of β-phase precipitates instead, which contributes to higher mechanical resistance. As a result, the T4 heat treatment improves the quality of the weld joint and increases the tensile strength in comparison to the T6 condition. The filler metal also plays an important role, and our results indicate that the use of ER 4043 produces stronger joints than ER 4553, but only under specific processing conditions, which include a moderate heat net flux. The latter is explained because Mg, Si and Cu are reported as precursors of the production of β”- phase due to heat input from the welding process and the redistribution of both: β” and β precipitates, causes a ductile intergranular fracture near the heat affected zone of the weld joint.


2020 ◽  
pp. 146531252097240
Author(s):  
Fernanda de Souza Henkin ◽  
Luciane Macedo de Menezes ◽  
Berenice Anina Dedavid ◽  
Cátia Abdo Quintão

Objective: To compare the mechanical strength of joints made by conventional soldering with those made by alternative, more biocompatible, methods (spot, tungsten inert gas [TIG] and laser welding), and to compare the microstructural morphology of wires welded with these techniques. Design: In vitro, laboratory study. Methods: Forty stainless-steel wire segments with 0.8-mm diameter were joined by silver soldering, spot, laser and TIG welding. Ten specimens were produced for each one. Tensile strength test was performed 24 h after welding on the Emic DL2000™ universal testing machine, using a load cell of 1000 N with a crosshead speed of 10 mm/min. Results: The highest tensile strength mean values were obtained with silver soldering (532 N), next were laser (420 N), spot (301 N) and TIG (296 N) welding. Statistically significant differences were observed between the groups; the Dunn post-hoc test revealed differences between laser and spot welding ( p=0.046), laser and TIG ( p = 0.016), spot and silver ( p <0.001), and silver and TIG ( p <0.001). Conclusion: Laser welding strength is high, and comparable to silver welding. Spot and TIG techniques present comparable and significantly lower strengths. The four methods presented resistance values compatible with orthodontic use. The microstructural morphology is different for each technique. The association between the mechanical performance and the microstructure evaluation shows that laser presented the highest quality joint.


2011 ◽  
Vol 337 ◽  
pp. 448-451 ◽  
Author(s):  
Hong Tao Zhang ◽  
Wen Jie Jiang ◽  
Ji Cai Feng ◽  
Shi Sheng Zhong

The effect of underwater wet welding processes with flux-cored wire on tensile properties and microstructure of Q235A steel was studied. Rolled plates of 8 mm thickness have been used as the base material for preparing single pass butt welded joints. OM and SEM were used to analyze the microstructure of the joint and the fractography of the tensile specimen. Tensile test showed that the fracure was occured at base metal and tensile strength could reach 415Mpa.


2014 ◽  
Vol 613 ◽  
pp. 43-52 ◽  
Author(s):  
Zbigniew Pilat ◽  
Jacek Szulc

Activities in the field of increasing the productivity of the production lines for welding thick metal sheets are focused in two directions. On the one hand, new technologies are being developed for welding, deeper weld penetration and faster welding process. On the other hand are focused on automation of these operations, which have the effect of reducing cost and increasing efficiency. Improved are also the working conditions of people employed in the welding processes. In both these directions the hybrid welding Plasma-GMAW could fulfill all requirements as a new technology. The article gives the concept model of the complete robotized welding cell, in which this method will be implemented and tested.


2011 ◽  
Vol 287-290 ◽  
pp. 2456-2459 ◽  
Author(s):  
Xin Song Chen ◽  
Wei Yao ◽  
Ai Qin Duan

The defocus distance is one of the most important factors during filling laser welding with wire. Keeping defocus distances stability is the pre-condition to acquire the stable weld quality. In this paper, a QUANTA laser camera was used to measure the defocus distance, and it is compensated in real time through the numerical control system. The results reveal that the fixed defocus distances can be acquired using this system. And the experiments by using auto-controlling method of the defocus distance show that the stability of welding process can be improved greatly and the good weld quality can be easy to be obtained.


Author(s):  
J. Zhou ◽  
H. L. Tsai

In recent years, lasers have been widely used in the welding processes for automotive, aerospace, electrical and heavy manufacturing industries due to their high power density, small heat-affected zone and high productivity. Especially, with high depth-to-width ratio and high welding efficiency, keyhole-mode laser welding is more promising compared to the conventional welding processes. However, a number of defects, such as porosity, irregular beads, undercut and humping are frequently observed in laser welds, which deteriorates the strength and quality of the welded parts. In current study, an externally controllable electromagnetic force is introduced into the laser welding process to prevent porosity formation and to control weld bead shape. Numerical models are developed to study the transport phenomena in laser welding and to accurately calculate the current density and magnetic flux fields and the resulting electromagnetic forces in three-dimensional weldments. Effects of the electromagnetic force on metal flow, heat and mass transfer and weld bead shape are investigated. The continuum model is used to handle the entire domain including solid phase, liquid phase and mush zone. The enthalpy method is employed to handle the absorption and release of latent heat during melting and solidification. Inverse Bremsstrahlung (IB) absorption, Fresnel absorption and multiple reflections of laser beam energy at the keyhole walls are considered for the study of laser-plasma interaction. Volume of Fluid (VOF) technique is adopted to calculate the free surface evolution in the computation. As indicated by this study, porosity-free laser welds with desired bead shapes can be achieved with appropriate applications of electromagnetic forces.


Sign in / Sign up

Export Citation Format

Share Document