scholarly journals Quotient-transitivity and cyclic subgroup-transitivity

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Brendan Goldsmith ◽  
Ketao Gong

AbstractWe introduce two new notions of transitivity for Abelian 𝑝-groups based on isomorphism of quotients rather than the classical use of equality of height sequences associated with Abelian 𝑝-group theory. Unlike the classical theory where “most” groups are transitive, these new notions lead to much smaller classes, but even these classes are sufficiently large to be interesting.

Author(s):  
Pierre Ramond
Keyword(s):  

Author(s):  
C. T. C. Wall
Keyword(s):  

2013 ◽  
Author(s):  
Liu-Qin Yang ◽  
Robert R. Wright ◽  
Liu-Qin Yang ◽  
Lisa M. Kath ◽  
Michael T. Ford ◽  
...  

2011 ◽  
Author(s):  
Kieran C. Molloy
Keyword(s):  

Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


Sign in / Sign up

Export Citation Format

Share Document