Integral geometry problems for symmetric tensor fields with incomplete data

Author(s):  
L. B. Vertgeim
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


1997 ◽  
Author(s):  
Lambertus Hesselink ◽  
Yingmei Lavin ◽  
Rajesh Batra ◽  
Yuval Levy ◽  
Lambertus Hesselink ◽  
...  

2011 ◽  
Vol 08 (03) ◽  
pp. 511-556 ◽  
Author(s):  
GIUSEPPE BANDELLONI

The relativistic symmetric tensor fields are, in four dimensions, the right candidates to describe Higher Spin Fields. Their highest spin content is isolated with the aid of covariant conditions, discussed within a group theory framework, in which auxiliary fields remove the lower intrinsic angular momenta sectors. These conditions are embedded within a Lagrangian Quantum Field theory which describes an Higher Spin Field interacting with a Classical background. The model is invariant under a (B.R.S.) symmetric unconstrained tensor extension of the reparametrization symmetry, which include the Fang–Fronsdal algebra in a well defined limit. However, the symmetry setting reveals that the compensator field, which restore the Fang–Fronsdal symmetry of the free equations of motion, is in the existing in the framework and has a relevant geometrical meaning. The Ward identities coming from this symmetry are discussed. Our constraints give the result that the space of the invariant observables is restricted to the ones constructed with the Highest Spin Field content. The quantum extension of the symmetry reveals that no new anomaly is present. The role of the compensator field in this result is fundamental.


2015 ◽  
Vol 92 (2) ◽  
pp. 521-524
Author(s):  
D. S. Anikonov ◽  
D. S. Konovalova

1980 ◽  
Vol 77 ◽  
pp. 5-11 ◽  
Author(s):  
Shoshichi Kobayashi

Let M be an n-dimensional compact Kaehler manifold, TM its (holomorphic) tangent bundle and T*M its cotangent bundle. Given a complex vector bundle E over M, we denote its m-th symmetric tensor power by SmE and the space of holomorphic sections of E by Γ(E).


2019 ◽  
Vol 40 (2) ◽  
pp. 951-975 ◽  
Author(s):  
Dietrich Braess ◽  
Astrid S Pechstein ◽  
Joachim Schöberl

Abstract We develop an a posteriori error bound for the interior penalty discontinuous Galerkin approximation of the biharmonic equation with continuous finite elements. The error bound is based on the two-energies principle and requires the computation of an equilibrated moment tensor. The natural space for the moment tensor is that of symmetric tensor fields with continuous normal-normal components, and is well-known from the Hellan-Herrmann-Johnson mixed formulation. We propose a construction that is totally local. The procedure can also be applied to the original Hellan–Herrmann–Johnson formulation, which directly provides an equilibrated moment tensor.


1997 ◽  
Vol 12 (02) ◽  
pp. 111-119 ◽  
Author(s):  
Shinichi Deguchi ◽  
Tadahito Nakajima

We consider a Yang–Mills theory in loop space with the affine gauge group. From this theory, we derive a local field theory with Yang–Mills fields and Abelian antisymmetric and symmetric tensor fields of the second rank. The Chapline–Manton coupling, i.e. coupling of Yang–Mills fields and a second-rank antisymmetric tensor field via the Chern–Simons three-form is obtained systematically.


Sign in / Sign up

Export Citation Format

Share Document