scholarly journals Deep Learning Based Part-of-Speech Tagging for Malayalam Twitter Data (Special Issue: Deep Learning Techniques for Natural Language Processing)

2019 ◽  
Vol 28 (3) ◽  
pp. 423-435 ◽  
Author(s):  
S. Kumar ◽  
M. Anand Kumar ◽  
K.P. Soman

Abstract The paper addresses the problem of part-of-speech (POS) tagging for Malayalam tweets. The conversational style of posts/tweets/text in social media data poses a challenge in using general POS tagset for tagging the text. For the current work, a tagset was designed that contains 17 coarse tags and 9915 tweets were tagged manually for experiment and evaluation. The tagged data were evaluated using sequential deep learning methods like recurrent neural network (RNN), gated recurrent units (GRU), long short-term memory (LSTM), and bidirectional LSTM (BLSTM). The training of the model was performed on the tagged tweets, at word level and character level. The experiments were evaluated using measures like precision, recall, f1-measure, and accuracy. During the experiment, it was found that the GRU-based deep learning sequential model at word level gave the highest f1-measure of 0.9254; at character-level, the BLSTM-based deep learning sequential model gave the highest f1-measure of 0.8739. To choose the suitable number of hidden states, we varied it as 4, 16, 32, and 64, and performed training for each. It was observed that the increase in hidden states improved the tagger model. This is an initial work to perform Malayalam Twitter data POS tagging using deep learning sequential models.

Author(s):  
Qiuyuan Huang ◽  
Li Deng ◽  
Dapeng Wu ◽  
Chang Liu ◽  
Xiaodong He

This paper proposes a novel neural architecture — Attentive Tensor Product Learning (ATPL) — to represent grammatical structures of natural language in deep learning models. ATPL exploits Tensor Product Representations (TPR), a structured neural-symbolic model developed in cognitive science, to integrate deep learning with explicit natural language structures and rules. The key ideas of ATPL are: 1) unsupervised learning of role-unbinding vectors of words via the TPR-based deep neural network; 2) the use of attention modules to compute TPR; and 3) the integration of TPR with typical deep learning architectures including long short-term memory and feedforward neural networks. The novelty of our approach lies in its ability to extract the grammatical structure of a sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. Our ATPL approach is applied to 1) image captioning, 2) part of speech (POS) tagging, and 3) constituency parsing of a natural language sentence. The experimental results demonstrate the effectiveness of the proposed approach in all these three natural language processing tasks.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1372
Author(s):  
Sanjanasri JP ◽  
Vijay Krishna Menon ◽  
Soman KP ◽  
Rajendran S ◽  
Agnieszka Wolk

Linguists have been focused on a qualitative comparison of the semantics from different languages. Evaluation of the semantic interpretation among disparate language pairs like English and Tamil is an even more formidable task than for Slavic languages. The concept of word embedding in Natural Language Processing (NLP) has enabled a felicitous opportunity to quantify linguistic semantics. Multi-lingual tasks can be performed by projecting the word embeddings of one language onto the semantic space of the other. This research presents a suite of data-efficient deep learning approaches to deduce the transfer function from the embedding space of English to that of Tamil, deploying three popular embedding algorithms: Word2Vec, GloVe and FastText. A novel evaluation paradigm was devised for the generation of embeddings to assess their effectiveness, using the original embeddings as ground truths. Transferability across other target languages of the proposed model was assessed via pre-trained Word2Vec embeddings from Hindi and Chinese languages. We empirically prove that with a bilingual dictionary of a thousand words and a corresponding small monolingual target (Tamil) corpus, useful embeddings can be generated by transfer learning from a well-trained source (English) embedding. Furthermore, we demonstrate the usability of generated target embeddings in a few NLP use-case tasks, such as text summarization, part-of-speech (POS) tagging, and bilingual dictionary induction (BDI), bearing in mind that those are not the only possible applications.


2020 ◽  
Vol 49 (4) ◽  
pp. 482-494
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Senait Gebremichael Tesfagergish

Deep Neural Networks (DNNs) have proven to be especially successful in the area of Natural Language Processing (NLP) and Part-Of-Speech (POS) tagging—which is the process of mapping words to their corresponding POS labels depending on the context. Despite recent development of language technologies, low-resourced languages (such as an East African Tigrinya language), have received too little attention. We investigate the effectiveness of Deep Learning (DL) solutions for the low-resourced Tigrinya language of the Northern-Ethiopic branch. We have selected Tigrinya as the testbed example and have tested state-of-the-art DL approaches seeking to build the most accurate POS tagger. We have evaluated DNN classifiers (Feed Forward Neural Network – FFNN, Long Short-Term Memory method – LSTM, Bidirectional LSTM, and Convolutional Neural Network – CNN) on a top of neural word2vec word embeddings with a small training corpus known as Nagaoka Tigrinya Corpus. To determine the best DNN classifier type, its architecture and hyper-parameter set both manual and automatic hyper-parameter tuning has been performed. BiLSTM method was proved to be the most suitable for our solving task: it achieved the highest accuracy equal to 92% that is 65% above the random baseline.


Author(s):  
Sunita Warjri ◽  
Partha Pakray ◽  
Saralin A. Lyngdoh ◽  
Arnab Kumar Maji

Part-of-speech (POS) tagging is one of the research challenging fields in natural language processing (NLP). It requires good knowledge of a particular language with large amounts of data or corpora for feature engineering, which can lead to achieving a good performance of the tagger. Our main contribution in this research work is the designed Khasi POS corpus. Till date, there has been no form of any kind of Khasi corpus developed or formally developed. In the present designed Khasi POS corpus, each word is tagged manually using the designed tagset. Methods of deep learning have been used to experiment with our designed Khasi POS corpus. The POS tagger based on BiLSTM, combinations of BiLSTM with CRF, and character-based embedding with BiLSTM are presented. The main challenges of understanding and handling Natural Language toward Computational linguistics to encounter are anticipated. In the presently designed corpus, we have tried to solve the problems of ambiguities of words concerning their context usage, and also the orthography problems that arise in the designed POS corpus. The designed Khasi corpus size is around 96,100 tokens and consists of 6,616 distinct words. Initially, while running the first few sets of data of around 41,000 tokens in our experiment the taggers are found to yield considerably accurate results. When the Khasi corpus size has been increased to 96,100 tokens, we see an increase in accuracy rate and the analyses are more pertinent. As results, accuracy of 96.81% is achieved for the BiLSTM method, 96.98% for BiLSTM with CRF technique, and 95.86% for character-based with LSTM. Concerning substantial research from the NLP perspectives for Khasi, we also present some of the recently existing POS taggers and other NLP works on the Khasi language for comparative purposes.


2020 ◽  
Vol 2 (1-2) ◽  
pp. 69-96 ◽  
Author(s):  
Alexander Jakob Dautel ◽  
Wolfgang Karl Härdle ◽  
Stefan Lessmann ◽  
Hsin-Vonn Seow

Abstract Deep learning has substantially advanced the state of the art in computer vision, natural language processing, and other fields. The paper examines the potential of deep learning for exchange rate forecasting. We systematically compare long short-term memory networks and gated recurrent units to traditional recurrent network architectures as well as feedforward networks in terms of their directional forecasting accuracy and the profitability of trading model predictions. Empirical results indicate the suitability of deep networks for exchange rate forecasting in general but also evidence the difficulty of implementing and tuning corresponding architectures. Especially with regard to trading profit, a simpler neural network may perform as well as if not better than a more complex deep neural network.


Author(s):  
Casper Shikali Shivachi ◽  
Refuoe Mokhosi ◽  
Zhou Shijie ◽  
Liu Qihe

The need to capture intra-word information in natural language processing (NLP) tasks has inspired research in learning various word representations at word, character, or morpheme levels, but little attention has been given to syllables from a syllabic alphabet. Motivated by the success of compositional models in morphological languages, we present a Convolutional-long short term memory (Conv-LSTM) model for constructing Swahili word representation vectors from syllables. The unified architecture addresses the word agglutination and polysemous nature of Swahili by extracting high-level syllable features using a convolutional neural network (CNN) and then composes quality word embeddings with a long short term memory (LSTM). The word embeddings are then validated using a syllable-aware language model ( 31.267 ) and a part-of-speech (POS) tagging task ( 98.78 ), both yielding very competitive results to the state-of-art models in their respective domains. We further validate the language model using Xhosa and Shona, which are syllabic-based languages. The novelty of the study is in its capability to construct quality word embeddings from syllables using a hybrid model that does not use max-over-pool common in CNN and then the exploitation of these embeddings in POS tagging. Therefore, the study plays a crucial role in the processing of agglutinative and syllabic-based languages by contributing quality word embeddings from syllable embeddings, a robust Conv–LSTM model that learns syllables for not only language modeling and POS tagging, but also for other downstream NLP tasks.


2021 ◽  
Author(s):  
Alycia Noel Carey ◽  
William Baker ◽  
Jason B. Colditz ◽  
Huy Mai ◽  
Shyam Visweswaran ◽  
...  

BACKGROUND Twitter provides a valuable platform for the surveillance and monitoring of public health topics; however, manually categorizing large quantities of Twitter data is labor intensive and presents barriers to identify major trends and sentiments. Additionally, while machine and deep learning approaches have been proposed with high accuracy, they require large, annotated data sets. Public pre-trained deep learning classification models, such as BERTweet, produce higher quality models while using smaller annotated training sets. OBJECTIVE This study aims to derive and evaluate a pre-trained deep learning model based on BERTweet that can identify tweets relevant to vaping, tweets (related to vaping) of commercial nature, and tweets with pro-vape sentiment. Additionally, the performance of the BERTweet classifier will be compared against a long short-term memory (LSTM) model to show the improvements a pre-trained model has over traditional deep learning approaches. METHODS Twitter data were collected from August – October 2019 using vaping related search terms. From this set, a random subsample of 2,401 English tweets was manually annotated for relevance (vaping related or not), commercial nature (commercial or not), and sentiment (positive, negative, neutral). Using the annotated data, three separate classifiers were built using BERTweet with the default parameters defined by the Simple Transformer API. Each model was trained for 20 iterations and evaluated with a random split of the annotate tweets, reserving 10% of tweets for evaluations. RESULTS The relevance, commercial, and sentiment classifiers achieved an area under the receiver operating characteristic curve (AUROC) of 94.5%, 99.3%, and 81.7%, respectively. Additionally, the weighted F1 scores of each were 97.6%, 99.0%, and 86.1%. We found that BERTweet outperformed the LSTM model in classification of all categories. CONCLUSIONS Large, open-source deep learning classifiers, such as BERTweet, can provide researchers the ability to reliably determine if tweets are relevant to vaping, include commercial content, and include positive, negative, or neutral content about vaping with a higher accuracy than traditional Natural Language Processing deep learning models. Such enhancement to the utilization of Twitter data can allow for faster exploration and dissemination of time-sensitive data than traditional methodologies (e.g., surveys, polling research).


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Hongwei Li ◽  
Hongyan Mao ◽  
Jingzi Wang

Part-of-Speech (POS) tagging is one of the most important tasks in the field of natural language processing (NLP). POS tagging for a word depends not only on the word itself but also on its position, its surrounding words, and their POS tags. POS tagging can be an upstream task for other NLP tasks, further improving their performance. Therefore, it is important to improve the accuracy of POS tagging. In POS tagging, bidirectional Long Short-Term Memory (Bi-LSTM) is commonly used and achieves good performance. However, Bi-LSTM is not as powerful as Transformer in leveraging contextual information, since Bi-LSTM simply concatenates the contextual information from left-to-right and right-to-left. In this study, we propose a novel approach for POS tagging to improve the accuracy. For each token, all possible POS tags are obtained without considering context, and then rules are applied to prune out these possible POS tags, which we call rule-based data preprocessing. In this way, the number of possible POS tags of most tokens can be reduced to one, and they are considered to be correctly tagged. Finally, POS tags of the remaining tokens are masked, and a model based on Transformer is used to only predict the masked POS tags, which enables it to leverage bidirectional contexts. Our experimental result shows that our approach leads to better performance than other methods using Bi-LSTM.


2022 ◽  
Vol 16 (4) ◽  
pp. 1-55
Author(s):  
Manish Gupta ◽  
Puneet Agrawal

In recent years, the fields of natural language processing (NLP) and information retrieval (IR) have made tremendous progress thanks to deep learning models like Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs) networks, and Transformer [ 121 ] based models like Bidirectional Encoder Representations from Transformers (BERT) [ 24 ], Generative Pre-training Transformer (GPT-2) [ 95 ], Multi-task Deep Neural Network (MT-DNN) [ 74 ], Extra-Long Network (XLNet) [ 135 ], Text-to-text transfer transformer (T5) [ 96 ], T-NLG [ 99 ], and GShard [ 64 ]. But these models are humongous in size. On the other hand, real-world applications demand small model size, low response times, and low computational power wattage. In this survey, we discuss six different types of methods (Pruning, Quantization, Knowledge Distillation (KD), Parameter Sharing, Tensor Decomposition, and Sub-quadratic Transformer-based methods) for compression of such models to enable their deployment in real industry NLP projects. Given the critical need of building applications with efficient and small models, and the large amount of recently published work in this area, we believe that this survey organizes the plethora of work done by the “deep learning for NLP” community in the past few years and presents it as a coherent story.


Author(s):  
Otman Maarouf ◽  
Rachid El Ayachi ◽  
Mohamed Biniz

Natural language processing (NLP) is a part of artificial intelligence that dissects, comprehends, and changes common dialects with computers in composed and spoken settings. At that point in scripts. Grammatical features part-of-speech (POS) allow marking the word as per its statement. We find in the literature that POS is used in a few dialects, in particular: French and English. This paper investigates the attention-based long short-term memory (LSTM) networks and simple recurrent neural network (RNN) in Tifinagh POS tagging when it is compared to conditional random fields (CRF) and decision tree. The attractiveness of LSTM networks is their strength in modeling long-distance dependencies. The experiment results show that LSTM networks perform better than RNN, CRF and decision tree that has a near performance.


Sign in / Sign up

Export Citation Format

Share Document