Coupled electric fields in photorefractive driven liquid crystal hybrid cells – theory and numerical simulation

2016 ◽  
Vol 24 (4) ◽  
Author(s):  
P. Moszczyński ◽  
A. Walczak ◽  
P. Marciniak

AbstractIn cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. It is the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation that LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Harald Pleiner ◽  
Helmut R. Brand

Abstract We investigate theoretically the macroscopic dynamics of various types of ordered magnetic fluid, gel, and elastomeric phases. We take a symmetry point of view and emphasize its importance for a macroscopic description. The interactions and couplings among the relevant variables are based on their individual symmetry behavior, irrespective of the detailed nature of the microscopic interactions involved. Concerning the variables we discriminate between conserved variables related to a local conservation law, symmetry variables describing a (spontaneously) broken continuous symmetry (e.g., due to a preferred direction) and slowly relaxing ones that arise from special conditions of the system are considered. Among the relevant symmetries, we consider the behavior under spatial rotations (e.g., discriminating scalars, vectors or tensors), under spatial inversion (discriminating e.g., polar and axial vectors), and under time reversal symmetry (discriminating e.g., velocities from polarizations, or electric fields from magnetic ones). Those symmetries are crucial not only to find the possible cross-couplings correctly but also to get a description of the macroscopic dynamics that is compatible with thermodynamics. In particular, time reversal symmetry is decisive to get the second law of thermodynamics right. We discuss (conventional quadrupolar) nematic order, polar order, active polar order, as well as ferromagnetic order and tetrahedral (octupolar) order. In a second step, we show some of the consequences of the symmetry properties for the various systems that we have worked on within the SPP1681, including magnetic nematic (and cholesteric) elastomers, ferromagnetic nematics (also with tetrahedral order), ferromagnetic elastomers with tetrahedral order, gels and elastomers with polar or active polar order, and finally magnetorheological fluids and gels in a one- and two-fluid description.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Pedro E. S. Silva ◽  
Ricardo Chagas ◽  
Susete N. Fernandes ◽  
Pawel Pieranski ◽  
Robin L. B. Selinger ◽  
...  

AbstractCellulose-based systems are useful for many applications. However, the issue of self-organization under non-equilibrium conditions, which is ubiquitous in living matter, has scarcely been addressed in cellulose-based materials. Here, we show that quasi-2D preparations of a lyotropic cellulose-based cholesteric mesophase display travelling colourful patterns, which are generated by a chemical reaction-diffusion mechanism being simultaneous with the evaporation of solvents at the boundaries. These patterns involve spatial and temporal variation in the amplitude and sign of the helix´s pitch. We propose a simple model, based on a reaction-diffusion mechanism, which simulates the observed spatiotemporal colour behaviour.


2012 ◽  
Vol 499 ◽  
pp. 114-119 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
X.B. Liu ◽  
Cheng Fa Song ◽  
Li Ning Sun

Numerical simulation of laser cladding is the main research topics for many universities and academes, but all researchers used the Gaussian laser light source. Due to using inside-beam powder feeding for laser cladding, the laser is dispersed by the cone-shaped mirror, and then be focused by the annular mirror, the laser can be assumed as the light source of uniform intensity.In this paper,the temperature of powder during landing selected as the initial conditions, and adopting the life-and-death unit method, the moving point heat source and the uniform heat source are realized. In the thickness direction, using the small melt layer stacking method, a finite element model has been established, and layer unit is acted layer by layer, then a virtual reality laser cladding manu-facturing process is simulated. Calculated results show that the surface temperature of the cladding layer depends on the laser scanning speed, powder feed rate, defocus distance. As cladding layers increases, due to the heat conduction into the base too late, bath temperature will gradually increase. The highest temperature is not at the laser beam, but at the later point of the laser beam. In the clad-ding process, the temperature cooling rate of the cladding layer in high temperature section is great, and in the low-temperature, cooling rate is relatively small. These conclusions are also similar with the normal laser cladding. Finally, some experiments validate the simulation results. The trends of simulating temperature are fit to the actual temperature, and the temperature gradient can also ex-plain the actual shape of cross-section.


2008 ◽  
Vol 5 (5) ◽  
pp. 394-397 ◽  
Author(s):  
X Hu ◽  
B Qian ◽  
P Zhang ◽  
X Wang ◽  
L Su ◽  
...  

Langmuir ◽  
2012 ◽  
Vol 28 (7) ◽  
pp. 3576-3582 ◽  
Author(s):  
Seock Hwan Kang ◽  
Jun-Hee Na ◽  
Sung Nam Moon ◽  
Woo Il Lee ◽  
Pil J. Yoo ◽  
...  

Soft Matter ◽  
2013 ◽  
Vol 9 (18) ◽  
pp. 4687 ◽  
Author(s):  
Katsuaki Suzuki ◽  
Yoshiaki Uchida ◽  
Rui Tamura ◽  
Yohei Noda ◽  
Naohiko Ikuma ◽  
...  

2021 ◽  
pp. 127772
Author(s):  
Na Li ◽  
Hanwen Jiang ◽  
Xiuwen Xia ◽  
Chengjie Zhu ◽  
Shuangyuan Xie ◽  
...  

2019 ◽  
Vol 344 ◽  
pp. 711-733 ◽  
Author(s):  
A.K. Nguyen ◽  
E. Blond ◽  
T. Sayet ◽  
A. Batakis ◽  
E. de Bilbao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document