scholarly journals Comparative Quality Estimation for Machine Translation Observations on Machine Learning and Features

2017 ◽  
Vol 108 (1) ◽  
pp. 307-318 ◽  
Author(s):  
Eleftherios Avramidis

AbstractA deeper analysis on Comparative Quality Estimation is presented by extending the state-of-the-art methods with adequacy and grammatical features from other Quality Estimation tasks. The previously used linear method, unable to cope with the augmented features, is replaced with a boosting classifier assisted by feature selection. The methods indicated show improved performance for 6 language pairs, when applied on the output from MT systems developed over 7 years. The improved models compete better with reference-aware metrics.Notable conclusions are reached through the examination of the contribution of the features in the models, whereas it is possible to identify common MT errors that are captured by the features. Many grammatical/fluency features have a good contribution, few adequacy features have some contribution, whereas source complexity features are of no use. The importance of many fluency and adequacy features is language-specific.

2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.


2021 ◽  
Author(s):  
Kai Guo ◽  
Zhenze Yang ◽  
Chi-Hua Yu ◽  
Markus J. Buehler

This review revisits the state of the art of research efforts on the design of mechanical materials using machine learning.


2017 ◽  
Vol 67 ◽  
pp. 29-42 ◽  
Author(s):  
Pui Yi Lee ◽  
Wei Ping Loh ◽  
Jeng Feng Chin

2020 ◽  
Author(s):  
Fei Qi ◽  
Zhaohui Xia ◽  
Gaoyang Tang ◽  
Hang Yang ◽  
Yu Song ◽  
...  

As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.


2021 ◽  
Vol 11 (17) ◽  
pp. 8074
Author(s):  
Tierui Zou ◽  
Nader Aljohani ◽  
Keerthiraj Nagaraj ◽  
Sheng Zou ◽  
Cody Ruben ◽  
...  

Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of the system model is the other part of the equation, since almost all applications in power systems heavily depend on the state estimator outputs. While much effort has been given to measurements of false data injection attacks, seldom reported work is found on the broad theme of false data injection on the database of network parameters. State-of-the-art physics-based model solutions correct false data injection on network parameter database considering only available wide-area measurements. In addition, deterministic models are used for correction. In this paper, an overdetermined physics-based parameter false data injection correction model is presented. The overdetermined model uses a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The method further applies the concept of synthetic measurements, which refers to measurements that do not exist in the real-life system. A machine learning linear regression-based model for measurement prediction is integrated in the framework through deriving weights for synthetic measurements creation. Validation of the presented model is performed on the IEEE 118-bus system. Numerical results show that the approximation error is lower than the state-of-the-art, while providing robustness to the correction process. Easy-to-implement model on the classical weighted-least-squares solution, highlights real-life implementation potential aspects.


2017 ◽  
Vol 2 (1) ◽  
pp. 299-316 ◽  
Author(s):  
Cristina Pérez-Benito ◽  
Samuel Morillas ◽  
Cristina Jordán ◽  
J. Alberto Conejero

AbstractIt is still a challenge to improve the efficiency and effectiveness of image denoising and enhancement methods. There exists denoising and enhancement methods that are able to improve visual quality of images. This is usually obtained by removing noise while sharpening details and improving edges contrast. Smoothing refers to the case of denoising when noise follows a Gaussian distribution.Both operations, smoothing noise and sharpening, have an opposite nature. Therefore, there are few approaches that simultaneously respond to both goals. We will review these methods and we will also provide a detailed study of the state-of-the-art methods that attack both problems in colour images, separately.


2022 ◽  
Vol 134 ◽  
pp. 103548
Author(s):  
Bianca Caiazzo ◽  
Mario Di Nardo ◽  
Teresa Murino ◽  
Alberto Petrillo ◽  
Gianluca Piccirillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document