injection attacks
Recently Published Documents


TOTAL DOCUMENTS

1046
(FIVE YEARS 474)

H-INDEX

47
(FIVE YEARS 11)

Author(s):  
Zhiwen Wang ◽  
Bin Zhang ◽  
Xiangnan Xu ◽  
Usman ◽  
Long Li

This paper investigates the security control problem of the cyber-physical system under false data injection attacks. A model predictive switching control strategy based on attack perception is proposed to compensate for the untrusted sequence of data caused by false data injection attacks. First, the binary attack detector is applied whether the system has suffered the attack. If the attack occurs, multistep correction is carried out for the future data according to the previous time data, and the waiting period [Formula: see text] is set. The input and output sequence of the controller is reconstructed, and the system is modeled as a constant time-delay switched system. Subsequently, the Lyapunov methods and average-dwell time are combined to provide sufficient conditions for the asymptotical stability of closed-loop switched system. Finally, the simulation of the networked first-order inverted pendulum model reveals that the control technique can efficiently suppress the influence of the attacks.


2022 ◽  
Vol 3 ◽  
Author(s):  
Karthikeyan Nagarajan ◽  
Junde Li ◽  
Sina Sayyah Ensan ◽  
Sachhidh Kannan ◽  
Swaroop Ghosh

Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural Networks (DNN). They are computationally more powerful and provide higher energy-efficiency than DNNs. While exciting at first glance, SNNs contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that can be exploited by the adversaries. We explore global fault injection attacks using external power supply and laser-induced local power glitches on SNN designed using common analog neurons to corrupt critical training parameters such as spike amplitude and neuron’s membrane threshold potential. We also analyze the impact of power-based attacks on the SNN for digit classification task and observe a worst-case classification accuracy degradation of −85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate, spike trace decay constant, and number of neurons) and identify design choices for robust implementation of SNN. We recover classification accuracy degradation by 30–47% for a subset of power-based attacks by modifying SNN training parameters such as learning rate, trace decay constant, and neurons per layer. We also propose hardware-level defenses, e.g., a robust current driver design that is immune to power-oriented attacks, improved circuit sizing of neuron components to reduce/recover the adversarial accuracy degradation at the cost of negligible area, and 25% power overhead. We also propose a dummy neuron-based detection of voltage fault injection at ∼1% power and area overhead each.


2022 ◽  
Vol 12 (1) ◽  
pp. 417
Author(s):  
Shaked Delarea ◽  
Yossi Oren

Fault attacks are traditionally considered under a threat model that assumes the device under test is in the possession of the attacker. We propose a variation on this model. In our model, the attacker integrates a fault injection circuit into a malicious field-replaceable unit, or FRU, which is later placed by the victim in close proximity to their own device. Examples of devices which incorporate FRUs include interface cards in routers, touch screens and sensor assemblies in mobile phones, ink cartridges in printers, batteries in health sensors, and so on. FRUs are often installed by after-market repair technicians without properly verifying their authenticity, and previous works have shown they can be used as vectors for various attacks on the privacy and integrity of smart devices. We design and implement a low-cost fault injection circuit suitable for placement inside a malicious FRU, and show how it can be used to practically extract secrets from a privileged system process through a combined hardware-software approach, even if the attacker software application only has user-level permissions. Our prototype produces highly effective and repeatable attacks, despite its cost being several orders of magnitude less than that of commonly used fault injection analysis lab setups. This threat model allows fault attacks to be carried out remotely, even if the device under test is in the hands of the victim. Considered together with recent advances in software-only fault attacks, we argue that resistance to fault attacks should be built into additional classes of devices.


Author(s):  
Shiyi Zhao ◽  
Qinmin Yang ◽  
Peng Cheng ◽  
Ruilong Deng ◽  
Jinhui Xia

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 212
Author(s):  
Ajit Kumar ◽  
Neetesh Saxena ◽  
Souhwan Jung ◽  
Bong Jun Choi

Critical infrastructures have recently been integrated with digital controls to support intelligent decision making. Although this integration provides various benefits and improvements, it also exposes the system to new cyberattacks. In particular, the injection of false data and commands into communication is one of the most common and fatal cyberattacks in critical infrastructures. Hence, in this paper, we investigate the effectiveness of machine-learning algorithms in detecting False Data Injection Attacks (FDIAs). In particular, we focus on two of the most widely used critical infrastructures, namely power systems and water treatment plants. This study focuses on tackling two key technical issues: (1) finding the set of best features under a different combination of techniques and (2) resolving the class imbalance problem using oversampling methods. We evaluate the performance of each algorithm in terms of time complexity and detection accuracy to meet the time-critical requirements of critical infrastructures. Moreover, we address the inherent skewed distribution problem and the data imbalance problem commonly found in many critical infrastructure datasets. Our results show that the considered minority oversampling techniques can improve the Area Under Curve (AUC) of GradientBoosting, AdaBoost, and kNN by 10–12%.


Sign in / Sign up

Export Citation Format

Share Document