Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C

2019 ◽  
Vol 107 (8) ◽  
pp. 663-678
Author(s):  
Francesco Endrizzi ◽  
Xavier Gaona ◽  
Zhicheng Zhang ◽  
Chao Xu ◽  
Linfeng Rao ◽  
...  

Abstract The solubility and hydrolysis of U(VI) were investigated in 0.10–5.6 m NaCl solutions with 4 ≤ pHm ≤ 14.3 (pHm = −log [H+]) at T = 25, 55 and 80 °C. Batch experiments were conducted under Ar atmosphere in the absence of carbonate. Solubility was studied from undersaturation conditions using UO3 · 2H2O(cr) and Na2U2O7 · H2O(cr) solid phases, equilibrated in acidic (4 ≤ pHm ≤ 6) and alkaline (8.2 ≤ pHm ≤ 14.3) NaCl solutions, respectively. Solid phases were previously tempered in solution at T = 80 °C to avoid changes in the crystallinity of the solid phase in the course of the solubility experiments. Starting materials and solid phases isolated at the end of the solubility experiments were characterized by powder XRD, SEM-EDS, TRLFS and quantitative chemical analysis. The enthalpy of dissolution of Na2U2O7 · H2O(cr) at 25–80 °C was measured independently by means of solution-drop calorimetry. Solid phase characterization indicates the transformation of UO3 · 2H2O(cr) into a sodium uranate-like phase with a molar ratio Na:U ≈ 0.4–0.5 in acidic solutions with [NaCl] ≥ 0.51 m at T = 80 °C. In contrast, Na2U2O7 · H2O(cr) equilibrated in alkaline NaCl solutions remains unaltered within the investigated pHm, NaCl concentration and temperature range. The solubility of Na2U2O7 · H2O(cr) in the alkaline pHm-range is noticeably enhanced at T = 55 and 80 °C relative to T = 25 °C. Combined results from solubility and calorimetric experiments indicate that this effect results from the increased acidity of water at elevated temperature, together with an enhanced hydrolysis of U(VI) and a minor contribution due to a decreased stability of Na2U2O7 · H2O(cr) under these experimental conditions. A thermodynamic model describing the solubility and hydrolysis equilibria of U(VI) in alkaline solutions at T = 25–80 °C is developed, including $\log^* {\rm K}_{\rm s,0}^{\circ} \ \{{\rm Na}_{2}{\rm U}_{2}{\rm O}_{7} \cdot {\rm H}_{2}{\rm O}({\rm cr})\}, \log^{*} \beta _{1,4}^{\circ} $ and related reaction enthalpies. The standard free energy and enthalpy of formation of Na2U2O7 · H2O(cr) calculated from these data are also provided. These data can be implemented in thermodynamic databases and allow accurate solubility and speciation calculations for U(VI) in dilute to concentrated alkaline NaCl solutions in the temperature range T = 25–80 °C.

Author(s):  
R. J. Gerdes ◽  
J. C. Weber

The first solid phase of calcium phosphate salts which are prepared "by rapid precipitation from alkaline solutions gives an x-ray diffraction pattern characteristic of amorphous materials. Investigations by methods of electron microscopy show that the aperiodic nature of the atomic structure is reflected in the external morphology of these precipitates; the particles are spheroids with electron.translucent cores. The present study was undertaken to ascertain the influence of heat treatment in the electron microscope on these amorphous calcium phosphates.The calcium phosphate salt was prepared at 25°C by rapid mixing of alkaline calcium and phosphate solutions of sufficient concentrations to produce instantaneous precipitation. A Ca/P molar ratio of 1.5 indicates that the product obtained is a neutral tricalcium phosphate. The amorphous material was prepared for examination in the electron microscope by suspending the dry solid in distilled water or in benzene or trichlorethylene. A drop of one of these suspensions was evaporated on a carbon film which covered an electron microscope grid.


1963 ◽  
Vol 41 (9) ◽  
pp. 2346-2350 ◽  
Author(s):  
S. K. Sen

The chlorite holocellulose of mesta fiber (Hibiscus cannabinus) was extracted with alkaline solutions of successively increasing concentration and finally with alkaline borate solution. Hemicellulose fractions (I–IV) were thus obtained. Analytical data are recorded for each fraction.Partial acid hydrolysis of the mesta hemicellulose gave 2-O-(4-O-methyl-α-D-glucopyranosyl uronic acid)-D-xylopyranose. Methanolysis and hydrolysis of the fully methylated hemicellulose (fraction II) gave a mixture of 3-O-methyl-D-xylose, 2,3-di-O-methyl-D-xylose, 2,3,4-tri-O-methyl-D-xylose, and 2-O-(2,3,4-tri-O-methyl-α-D-glucopyranosyl uronic acid)-3-O-methyl-D-xylopyranose in the approximate molar ratio of 1.6:34:1:6.4. The number-average molecular weight of the methylated polysaccharide was 18,400 ± 500 (degree of polymerization, 110 ± 3). The number-average molecular weight of the original hemicellulose (fraction II) was found to be 23,000 ± 500 (degree of polymerization, 164 ± 3). On the basis of this and other evidences it is suggested that the polysaccharide is composed of chains of 144 (1 → 4)-linked β-D-xylopyranose residues having approximately every seventh residue carrying a terminal 4-O-methyl-α-D-glucuronic acid residue linked through position 2. A small degree of branching in the backbone of D-xylose is indicated.


2001 ◽  
Vol 89 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Volker Neck ◽  
J. I. Kim

The solubility and hydrolysis of Th(IV), U(IV), Np(IV), and Pu(IV) are critically reviewed and a comprehensive set of thermodynamic constants at I = 0 and 25°C is presented. The hydrolysis constants are selected preferentially from experimental studies at actinide trace concentrations, where the interference of colloid formation can be excluded. Unknown formation constants of mononuclear complexes An(OH)The solubilities of U(IV), Np(IV), and Pu(IV) hydroxides or hydrous oxides can be calculated by accounting only for mononuclear hydrolysis species. The considerably higher solubilities of amorphous Th(IV) precipitates at pH <5 include major contributions of polynuclear species. The solubility data in acidic solutions depend strongly on the preparation and crystallinity of the solid phase. In neutral and alkaline solutions, where An(OH)


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4022
Author(s):  
Kende Attila Béres ◽  
István E. Sajó ◽  
György Lendvay ◽  
László Trif ◽  
Vladimir M. Petruševski ◽  
...  

An aerial humidity-induced solid-phase hydrolytic transformation of the [Zn(NH3)4]MoO4@2H2O (compound 1@2H2O) with the formation of [(NH4)xH(1−x)Zn(OH)(MoO4)]n (x = 0.92–0.94) coordination polymer (formally NH4Zn(OH)MoO4, compound 2) is described. Based on the isostructural relationship, the powder XRD indicates that the crystal lattice of compound 1@2H2O contains a hydrogen-bonded network of tetraamminezinc (2+) and molybdate (2−) ions, and there are cavities (O4N4(μ-H12) cube) occupied by the two water molecules, which stabilize the crystal structure. Several observations indicate that the water molecules have no fixed positions in the lattice voids; instead, the cavity provides a neighborhood similar to those in clathrates. The @ symbol in the notation is intended to emphasize that the H2O in this compound is enclathrated rather than being water of crystallization. Yet, signs of temperature-dependent dynamic interactions with the wall of the cages can be detected, and 1@2H2O easily releases its water content even on standing and yields compound 2. Surprisingly, hydrolysis products of 1 were observed even in the absence of aerial humidity, which suggests a unique solid-phase quasi-intramolecular hydrolysis. A mechanism involving successive substitution of the ammonia ligands by water molecules and ammonia release is proposed. An ESR study of the Cu-doped compound 2 (2#dotCu) showed that this complex consists of two different Cu2+(Zn2+) environments in the polymeric structure. Thermal decomposition of compounds 1 and 2 results in ZnMoO4 with similar specific surface area and morphology. The ZnMoO4 samples prepared from compounds 1 and 2 and compound 2 in itself are active photocatalysts in the degradation of Congo Red dye. IR, Raman, and UV studies on compounds 1@2H2O and 2 are discussed in detail.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Jamal Lasri ◽  
Matti Haukka ◽  
Hessa H. Al-Rasheed ◽  
Nael Abutaha ◽  
Ayman El-Faham ◽  
...  

The square planar complex [Pd(PT)Cl(H2O)]*H2O (HPT: 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione) was obtained by the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (MBPT) pincer ligand with PdCl2 in a molar ratio (1:1) under thermal conditions and using acetone as a solvent. The reaction proceeded via C-N cleavage of one C-N moiety that connects the pyrazole and s-triazine combined with the hydrolysis of the O-CH3 group. The reaction of the chloride salt of its higher congener (PtCl2) gave [Pt(3,5-dimethyl-1H-pyrazole)2Cl2]. The crystal structure of [Pd(PT)Cl(H2O)]*H2O complex is stabilized by inter- and intra-molecular hydrogen bonding interactions. Hirshfeld analysis revealed that the H...H (34.6%), O...H (23.6%), and Cl...H (7.8%) interactions are the major contacts in the crystal. The charges at Pd, H2O, Cl and PT are changed to 0.4995, 0.2216, −0.4294 and −0.2917 instead of +2, 0, −1 and −1, respectively, using the MPW1PW91 method. [Pd(PT)Cl(H2O)]*H2O complex has almost equal activities against MDA-MB-231 and MCF-7 cell lines with IC50 of 38.3 µg/mL.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Debra Wu ◽  
Douglas Vogus ◽  
Vinu Krishnan ◽  
Marta Broto ◽  
Anusha Pusuluri ◽  
...  

Liposome-based drug delivery systems have allowed for better drug tolerability and longer circulation times but are often optimized for a single agent due to the inherent difficulty of co-encapsulating two drugs with differing chemical profiles. Here, we design and test a prodrug based on a ribosylated nucleoside form of 5-fluorouracil, 5-fluorouridine (5FUR), with the final purpose of co-encapsulation with doxorubicin (DOX) in liposomes. To improve the loading of 5FUR, we developed two 5FUR prodrugs that involved the conjugation of either one or three moieties of tryptophan (W) known respectively as, 5FUR−W and 5FUR−W3. 5FUR−W demonstrated greater chemical stability than 5FUR−W3 and allowed for improved loading with fewer possible byproducts from tryptophan hydrolysis. Varied drug ratios of 5FUR−W: DOX were encapsulated for in vivo testing in the highly aggressive 4T1 murine breast cancer model. A liposomal molar ratio of 2.5 5FUR−W: DOX achieved a 62.6% reduction in tumor size compared to the untreated control group and a 33% reduction compared to clinical doxorubicin liposomes in a proof-of-concept study to demonstrate the viability of the co-encapsulated liposomes. We believe that the new prodrug 5FUR−W demonstrates a prodrug design with clinical translatability by reducing the number of byproducts produced by the hydrolysis of tryptophan, while also allowing for loading flexibility.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


1980 ◽  
Vol 45 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Zdeněk Kodejš ◽  
Ivo Sláma

Molar volumes and densities of mixtures consisting of water, calcium nitrate, and calcium bromide have been determined in the range of molar ratio of water within 3 to 18 and in the temperature range of 20 to 80° C. The obtained results have been described by an equation derived under the assumption that additivity of molar volumes of the components is valid.


1968 ◽  
Vol 46 (14) ◽  
pp. 2409-2413 ◽  
Author(s):  
Shmuel Migdal ◽  
David Gertner ◽  
Albert Zilkha

The controlled basic hydrolysis of tetrabutyl-1,3-dichlorodistannoxane under interfacial conditions was found to lead to α,ω-dichlorooligostannoxanes, Cl(SnBu2O)nSnBu2Cl, n being controlled by the molar ratio of base to distannoxane. These oligostannoxanes were identical with those prepared by other methods. They were used in the preparation of oligostannoxane dicarboxylates and organotin polyesters, having stannoxane recurring units in their backbone, by reaction with the sodium salts of mono- or dicarboxylic acids under interfacial conditions.


Sign in / Sign up

Export Citation Format

Share Document