scholarly journals Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

Author(s):  
Michaela Samardžiová

Abstract This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5–axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.

2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


Author(s):  
Dong Min Kim ◽  
Do Young Kim ◽  
In Su Jo ◽  
Tae Jin Song ◽  
Kyung Soo Paik ◽  
...  

The hard turning process is widely used in automobile and heavy machinery industries. Extreme cutting conditions like high temperature and tool wear rate, are associated with the hard turning process. Cubic boron nitride (CBN) cutting tool is generally preferred for hard machining operations. However, higher tool cost, and tool failure due to thermal shock limits its widespread usage. In machining performance analysis, tool wear is an important parameter which is directly related to the cost of the machining process. Previous studies have reported the improvement in tool life by using cryogenic coolant as a cutting fluid. Objective of this paper is to investigate the effect of cryogenic cooling on the tool wear of CBN and Ti-coated alumina ceramic cutting tools used in the hard turning of AISI 52100 hardened steel. High pressure cryogenic jet (HPCJ) module was optimized and configured to use it for hard turning case. Computational fluid dynamics (CFD) based simulation was used to test and optimize the nozzle design for the flow of cryogenic coolant. It was validated by fundamental heat removal test. Ceramic and CBN cutting tools were then used for hard turning of parts using HPCJ module. Flank wear lengths for various cooling conditions were measured and analyzed. It was observed that the higher tool life of a Ti-coated alumina ceramic can be achieved under cryogenic cooling technique, as compared to the CBN insert under dry conditions. Cost analysis of these hard turning cases was also conducted to check the feasibility of its usage under realistic shop floor conditions. It was observed that the machining using Ti-coated ceramic under cryogenic jet may reduce the total tooling cost compared to CBN cutting tool conducted under dry conditions.


2016 ◽  
Vol 836-837 ◽  
pp. 29-35
Author(s):  
Pavel Zeman ◽  
Petr Kolar ◽  
Petr Masek

Machining of fibre-reinforced thermosets is becoming a very popular technology today. Nevertheless, machinability of these materials is rather different from conventional materials such as metals since hard and abrasive fibres are combined with relatively soft resin with low glass transition temperature. Special attention has to be given to workpiece quality because delamination and burning of machined surface can occur. An experimental investigation into machinability of a polymeric and cellulose fibre-reinforced resin material was carried out. Milling operations were inspected with respect to process temperature, cutting forces and machined surface quality. The effect of cutting conditions on the mentioned aspects was determined. Standard and tailored cutting tools were used in the investigation. It was observed that surface quality is strongly dependent on tool geometry, milling strategy, fibre orientation and feed. On the other hand, cutting forces are relatively low and dependent on tool geometry and feed. The modified cutting tool with more positive tool geometry showed better results compared to the conventional one.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2926 ◽  
Author(s):  
Krzysztof Dudzik ◽  
Wojciech Labuda

Ensuring optimal turning conditions has a huge impact on the quality and properties of the machined surface. The condition of the cutting tool is one of the factors to achieve this goal. In order to control its wear during the turning process, monitoring was used. In this study, the acoustic emission method and measure of cutting forces during turning were used for monitoring that process. The research was carried out on a universal lathe center (CU500MRD type) using a Kistler dynamometer with assembled removable insert CCET09T302R-MF by DIJET Industrial CO., LTD. A dynamometer allows to measure forces Fx (radial force), Fy (feed force) and Fz (cutting force). The turning process was performed on a shaft with 60 mm diameter made of 304L stainless steel. The AE research was carried at Physical Acoustics Corporation with the kit that includes: recorder USB AE Node, preamplifier, AE-sensor VS 150M and computer with dedicated software used for recording and analyzing AE data. The aim of this paper is to compare selected diagnostic methods: acoustic emission and cutting forces measurement for monitoring wear of cutting tool edge. Analysis of the research results showed that both selected methods of monitoring the turning process allowed the determination of the beginning of the tool damage process.


Author(s):  
S. Saravanamurugan ◽  
B. Shyam Sundar ◽  
R. Sibi Pranav ◽  
A. Shanmugasundaram

2011 ◽  
Vol 223 ◽  
pp. 554-563 ◽  
Author(s):  
Noemia Gomes de Mattos de Mesquita ◽  
José Eduardo Ferreira de Oliveira ◽  
Arimatea Quaresma Ferraz

Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have direct influence on production. The premature removal of the cutting tool results in high cost of machining, since the parcel relating to the cost of the cutting tool increases. On the other hand the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use, when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.


Author(s):  
C. G. Jensen ◽  
J. K. Hill ◽  
K. A. White

Abstract Engineers and designers use a wide variety of curve and surface formulations to describe products. The process of producing the physical shape of these products has remained essentially unchanged for many years. Traditionally, the process of finish surface machining has been error prone and inefficient due in large part to the mathematical basis used to control the positioning, orientation and movement of cutting tools in five-axis machining centers. This paper presents swept silhouette curvature matching algorithms for positioning and orienting a cutter such that tool and surface curvatures match. Formulations are given for both flat and filleted end mill cutters. The benefits of curvature matching are: reduction of local machining errors, reduction or elimination of grinding of the finished machined surface, and the improvement of machine tool efficiency. Examples are given that compare curvature matching to traditional machining methods. The paper concludes by discussing current research into a priori gouge detection methods based on intersection contact between the cutting tool and the design surface or the lower tolerance-bound offset surface to the design surface. An a priori gouge detection algorithm is necessary for the development of optimal tool motion and the reduction of time spent in tool path editing and verification. Techniques involving collinear normals, Bézier clipping, triangulation, normal intersection and swept volumes are suggested as techniques for examining the positional and translational tool gouge problem.


Author(s):  
Kivilcim Buyukhatipoglu ◽  
Ismail Lazoglu ◽  
Hubert Kratz ◽  
Fritz Klocke

In precision machining, due to the recent developments on the cutting tools, machine tool structural rigidity and improved CNC controllers, hard turning is an emerging process as an alternative to some of the grinding processes by providing reductions in costs and cycle-times. In industrial environments, hard turning is established for geometry features of parts with low to medium requirements on part quality. Better and deeper understanding of cutting forces, stresses and temperature fields, temperature gradients created during the machining are very critical for achieving highest quality products and high productivity in feasible cycle times. In order to enlarge the capability profile of the hard turning process, this paper introduces to prediction models of mechanical and thermal loads during turning of 51CrV4 with hardness of 68 HRC by CBN tool. The shear flow stress, shear and friction angles are determined from the orthogonal cutting tests. Cutting force coefficients are determined from orthogonal to oblique transformations. Cutting forces and surface profiles are predicted and compared with experimental measurements.


2013 ◽  
Vol 581 ◽  
pp. 188-193 ◽  
Author(s):  
Łukasz Ślusarczyk ◽  
Grzegorz Struzikiewicz

The paper presents an analysis of the impact of cutting parameters such as cutting rate, feed rate, cutting depth and cutting tool material grade for surface roughness, the components of the total cutting force and chip morphology. We analysed the process of rolling 145Cr steel with a hardness of 55HRC with Wiper type tools with different percentage of CBN. The results and conclusions were presented.


Sign in / Sign up

Export Citation Format

Share Document