Comparison of different SLAM approaches for a driverless race car
Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.