dead reckoning
Recently Published Documents


TOTAL DOCUMENTS

1181
(FIVE YEARS 264)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Dongpeng Xie ◽  
Jinguang Jiang ◽  
Jiaji Wu ◽  
Peihui Yan ◽  
Yanan Tang ◽  
...  

Aiming at the problem of high-precision positioning of mass-pedestrians with low-cost sensors, a robust single-antenna Global Navigation Satellite System (GNSS)/Pedestrian Dead Reckoning (PDR) integration scheme is proposed with Gate Recurrent Unit (GRU)-based zero-velocity detector. Based on the foot-mounted pedestrian navigation system, the error state extended Kalman filter (EKF) framework is used to fuse GNSS position, zero-velocity state, barometer elevation, and other information. The main algorithms include improved carrier phase smoothing pseudo-range GNSS single-point positioning, GRU-based zero-velocity detection, and adaptive fusion algorithm of GNSS and PDR. Finally, the scheme was tested. The root mean square error (RMSE) of the horizontal error in the open and complex environments is lower than 1 m and 1.5 m respectively. In the indoor elevation experiment where the elevation difference of upstairs and downstairs exceeds 25 m, the elevation error is lower than 1 m. This result can provide technical reference for the accurate and continuous acquisition of public pedestrian location information.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8430
Author(s):  
Krzysztof Jaskólski ◽  
Łukasz Marchel ◽  
Andrzej Felski ◽  
Marcin Jaskólski ◽  
Mariusz Specht

To enhance the safety of marine navigation, one needs to consider the involvement of the automatic identification system (AIS), an existing system designed for ship-to-ship and ship-to-shore communication. Previous research on the quality of AIS parameters revealed problems that the system experiences with sensor data exchange. In coastal areas, littoral AIS does not meet the expectations of operational continuity and system availability, and there are areas not covered by the system. Therefore, in this study, process models were designed to simulate the tracking of vessel trajectories, enabling system failure detection based on integrity monitoring. Three methods for system integrity monitoring, through hypotheses testing with regard to differences between model output and actual simulated vessel positions, were implemented, i.e., a Global Positioning System (GPS) ship position model, Dead Reckoning and RADAR Extended Kalman Filter (EKF)—Simultaneous localization and mapping (SLAM) based on distance and bearing to navigational aid. The designed process models were validated on simulated AIS dynamic data, i.e., in a simulated experiment in the area of Gdańsk Bay. The integrity of AIS information was determined using stochastic methods based on Markov chains. The research outcomes confirmed the usefulness of the proposed methods. The results of the research prove the high level (~99%) of integrity of the dynamic information of the AIS system for Dead Reckoning and the GPS process model, while the level of accuracy and integrity of the position varied depending on the distance to the navigation aid for the RADAR EKF-SLAM process model.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8180
Author(s):  
Jijun Geng ◽  
Linyuan Xia ◽  
Jingchao Xia ◽  
Qianxia Li ◽  
Hongyu Zhu ◽  
...  

Indoor localization based on pedestrian dead reckoning (PDR) is drawing more and more attention of researchers in location-based services (LBS). The demand for indoor localization has grown rapidly using a smartphone. This paper proposes a 3D indoor positioning method based on the micro-electro-mechanical systems (MEMS) sensors of the smartphone. A quaternion-based robust adaptive cubature Kalman filter (RACKF) algorithm is proposed to estimate the heading of pedestrians based on magnetic, angular rate, and gravity (MARG) sensors. Then, the pedestrian behavior patterns are distinguished by detecting the changes of pitch angle, total accelerometer and barometer values of the smartphone in the duration of effective step frequency. According to the geometric information of the building stairs, the step length of pedestrians and the height difference of each step can be obtained when pedestrians go up and downstairs. Combined with the differential barometric altimetry method, the optimal height can be computed by the robust adaptive Kalman filter (RAKF) algorithm. Moreover, the heading and step length of each step are optimized by the Kalman filter to reduce positioning error. In addition, based on the indoor map vector information, this paper proposes a heading calculation strategy of the 16-wind rose map to improve the pedestrian positioning accuracy and reduce the accumulation error. Pedestrian plane coordinates can be solved based on the Pedestrian Dead-Reckoning (PDR). Finally, combining pedestrian plane coordinates and height, the three-dimensional positioning coordinates of indoor pedestrians are obtained. The proposed algorithm is verified by actual measurement examples. The experimental verification was carried out in a multi-story indoor environment. The results show that the Root Mean Squared Error (RMSE) of location errors is 1.04–1.65 m by using the proposed algorithm for three participants. Furthermore, the RMSE of height estimation errors is 0.17–0.27 m for three participants, which meets the demand of personal intelligent user terminal for location service. Moreover, the height parameter enables users to perceive the floor information.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3016
Author(s):  
Juraj Machaj ◽  
Peter Brida ◽  
Slavomir Matuska

In the last decade, positioning using wireless signals has gained a lot of attention since it could open new opportunities for service providers. Localization is important, especially in indoor environments, where the widely used global navigation satellite systems (GNSS) signals suffer from high signal attenuation and multipath propagation, resulting in poor accuracy or a loss of positioning service. Moreover, in an Internet of things (IoT) environment, the implementation of GNSS receivers into devices may result in higher demands on battery capacity, as well as increased cost of the hardware itself. Therefore, alternative localization systems that are based on wireless signals for the communication of IoT devices are gaining a lot of attention. In this paper, we provide a design of an IoT localization system, which consists of multiple localization modules that can be utilized for the positioning of IoT devices that are connected thru various wireless technologies. The proposed system can currently perform localization based on received signals from LoRaWAN, ZigBee, Wi-Fi, UWB and cellular technologies. The implemented pedestrian dead reckoning algorithm can process the data measured by a mobile device that is equipped with inertial sensors to construct a radio map and thus help with the deployment of the positioning services based on a fingerprinting approach.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8028
Author(s):  
Dongqing Zhao ◽  
Dongmin Wang ◽  
Minzhi Xiang ◽  
Jinfei Li ◽  
Chaoyong Yang ◽  
...  

The wide use of cooperative missions using multiple unmanned platforms has made relative distance information an essential factor for cooperative positioning and formation control. Reducing the range error effectively in real time has become the main technical challenge. We present a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the observed values containing random noise in the filtering process. Simulation and experimental results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the measurement distance, thus improving the relative distance precision and enhancing the stability and reliability of cooperative positioning.


2021 ◽  
Author(s):  
Cedric De Cock ◽  
Wout Joseph ◽  
Luc Martens ◽  
David Plets

Author(s):  
Nassim Bessaad ◽  
Qilian Bao ◽  
Zhao Jiankang ◽  
Karam Eliker

Abstract This work focuses on the feasibility of a fully autonomous geo-localization system for near-earth applications based on the strap-down inertial navigation system (SINS) and the star tracker. First, each sensor is analyzed individually. Then, the performance of the integrated system in a dynamic situation is investigated. Moreover, a detailed angle error analysis is given to estimate the impact on geo-localization. The navigation solution is proven to be affected by the sensors' errors plus an algorithmic error from the dead reckoning computation. Lastly, simulations are concluded to assess the dynamic movement scenario's performance and navigational possibility using the nonlinear Kalman filter. The results show the continuing divergence of the integrated navigation system affected by the dead reckoning algorithm. However, the continuous initial alignment in static mode reinitializes the position error successfully.


Author(s):  
Hamzah Ahmad ◽  
Mohammad Heerwan Peeie ◽  
Mohd Syakirin Ramli ◽  
Amir Akramin Bin Shafie ◽  
Mohd Hezri Fazalul Rahiman

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7428
Author(s):  
Wennan Chai ◽  
Chao Li ◽  
Mingyue Zhang ◽  
Zhen Sun ◽  
Hao Yuan ◽  
...  

The visual-inertial simultaneous localization and mapping (SLAM) is a feasible indoor positioning system that combines the visual SLAM with inertial navigation. There are accumulated drift errors in inertial navigation due to the state propagation and the bias of the inertial measurement unit (IMU) sensor. The visual-inertial SLAM can correct the drift errors via loop detection and local pose optimization. However, if the trajectory is not a closed loop, the drift error might not be significantly reduced. This paper presents a novel pedestrian dead reckoning (PDR)-aided visual-inertial SLAM, taking advantage of the enhanced vanishing point (VP) observation. The VP is integrated into the visual-inertial SLAM as an external observation without drift error to correct the system drift error. Additionally, the estimated trajectory’s scale is affected by the IMU measurement errors in visual-inertial SLAM. Pedestrian dead reckoning (PDR) velocity is employed to constrain the double integration result of acceleration measurement from the IMU. Furthermore, to enhance the proposed system’s robustness and the positioning accuracy, the local optimization based on the sliding window and the global optimization based on the segmentation window are proposed. A series of experiments are conducted using the public ADVIO dataset and a self-collected dataset to compare the proposed system with the visual-inertial SLAM. Finally, the results demonstrate that the proposed optimization method can effectively correct the accumulated drift error in the proposed visual-inertial SLAM system.


Sign in / Sign up

Export Citation Format

Share Document