scholarly journals Applications of uniform distribution theory to the Riemann zeta-function

2015 ◽  
Vol 64 (1) ◽  
pp. 67-74
Author(s):  
Selin Selen Özbek ◽  
Jörn Steuding

Abstract We give two applications of uniform distribution theory to the Riemann zeta-function. We show that the values of the argument of are uniformly distributed modulo , where P(n) denotes the values of a polynomial with real coefficients evaluated at the positive integers. Moreover, we study the distribution of arg modulo π, where γn is the nth ordinate of a zeta zero in the upper half-plane (in ascending order).

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 369
Author(s):  
Jiamei Liu ◽  
Yuxia Huang ◽  
Chuancun Yin

In this paper, we present a different proof of the well known recurrence formula for the Riemann zeta function at positive even integers, the integral representations of the Riemann zeta function at positive integers and at fractional points by means of a probabilistic approach.


2018 ◽  
Vol Volume 40 ◽  
Author(s):  
William D. Banks

International audience We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of this proof is that it makes no use of the Euler product for ζ(s).


2019 ◽  
Vol 24 (3) ◽  
pp. 404-421
Author(s):  
Lahoucine Elaissaoui ◽  
Zine El-Abidine Guennoun

We show that integrals involving the log-tangent function, with respect to any square-integrable function on (0,π/2), can be evaluated by the harmonic series. Consequently, several formulas and algebraic properties of the Riemann zeta function at odd positive integers are discussed. Furthermore, we show among other things, that the log-tangent integral with respect to the Hurwitz zeta function defines a meromorphic function and its values depend on the Dirichlet series ζh(s) :=∑n≥1hnn−s−8, where hn=∑nk=1(2k−1)−1.


2012 ◽  
Vol 87 (3) ◽  
pp. 452-461 ◽  
Author(s):  
TAKASHI NAKAMURA ◽  
ŁUKASZ PAŃKOWSKI

AbstractIn the paper we deal with self-approximation of the Riemann zeta function in the half plane $\operatorname {Re} s\gt 1$ and in the right half of the critical strip. We also prove some results concerning joint universality and joint value approximation of functions $\zeta (s+\lambda +id\tau )$ and $\zeta (s+i\tau )$.


2010 ◽  
Vol 06 (05) ◽  
pp. 959-988 ◽  
Author(s):  
FRÉDÉRIC JOUHET ◽  
ELIE MOSAKI

Dans cet article, nous nous intéressons à un q-analogue aux entiers positifs de la fonction zêta de Riemann, que l'on peut écrire pour s ∈ ℕ* sous la forme ζq(s) = ∑k≥1qk∑d|kds-1. Nous donnons une nouvelle minoration de la dimension de l'espace vectoriel sur ℚ engendré, pour 1/q ∈ ℤ\{-1; 1} et A entier pair, par 1, ζq(3), ζq(5), …, ζq(A - 1). Ceci améliore un résultat récent de Krattenthaler, Rivoal et Zudilin ([13]). En particulier notre résultat a pour conséquence le fait que pour 1/q ∈ ℤ\{-1; 1}, au moins l'un des nombres ζq(3), ζq(5), ζq(7), ζq(9) est irrationnel. In this paper, we focus on a q-analogue of the Riemann zeta function at positive integers, which can be written for s ∈ ℕ* by ζq(s) = ∑k≥1qk∑d|kds-1. We give a new lower bound for the dimension of the vector space over ℚ spanned, for 1/q ∈ ℤ\{-1; 1} and an even integer A, by 1, ζq(3), ζq(5), …, ζq(A-1). This improves a recent result of Krattenthaler, Rivoal and Zudilin ([13]). In particular, a consequence of our result is that for 1/q ∈ ℤ\{-1; 1}, at least one of the numbers ζq(3), ζq(5), ζq(7), ζq(9) is irrational.


Author(s):  
Antanas Laurincikas

We consider the approximation of analytic functions by shifts of the Riemann zeta-function ?(s+ikh) with fixed h > 0 when positive integers k run over the interval [N,N+M], where N1/3(logN)26=15 ? M ? N, and prove that those k have a positive lower density as N ? ?. The same is true for some compositions. Two types of h > 0 are discussed separately.


Sign in / Sign up

Export Citation Format

Share Document