Na6[TeMo6O24]·22 H2O – A Layered Heteropoly Compound with the Chain-Like Polycation {Na3(Η2O)1111}n3n+

1993 ◽  
Vol 48 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Christian Robl ◽  
Mona Frost

Colourless triclinic single crystals of Na6[TeMo6O24] · 22 H2O were grown from aqueous solution (space group P 1, a = 1030.89(9), b = 1056.7(1), c = 1106.32(9) pm, α = 90.120(7), β = 115.220(6), γ = 105.195(7), Ζ = 1, 295 Κ, 336 parameters, 3181 reflections, Rg = 0.0186). There are three crystallographically independent Na+ cations. Two of them are coordinated octahedrally by water molecules only. The third Na+ cation is bound to five H2O and one oxygen atom (O(4)) belonging to the Anderson-Evans type anion [TeMo6O24]6-. The sodium-centered coordination octahedra are linked by common edges exclusively formed by water molecules to yield chain-like polycations {Na3(H2O)11}n,3n+ which are bound by the Na(1)-O(4) contact to the anions situated on crystallographic centers of inversion forming a layer-like arrangement. Further connections between the polycations and the [TeMo6O24]6- anions are established by hydrogen bonds involving all the oxygen atoms of the anion except O(4) as almost equivalent proton acceptors regardless of their bonding mode to Te or Mo.

2019 ◽  
Author(s):  
Roberto Köferstein

Single crystals of [Mn(H2O)2]4[HNC5H4(COO)]2[C6H2(COO)4]2·4H2O have been prepared in aqueous solution at 55 °C. Space group P-1 (no. 2), a = 999.7(2), b = 1314.4(2), c =1645.8(2) pm, α = 101.096(8)°, β = 92.796(14)°, γ = 96.03(2)°, V = 2.1053(5) nm3, Z = 2.There are four unique Mn2+ which are coordinated in a distorted, octahedral manner by twowater molecules, three oxygen atoms of the pyromellitate anions and one oxygen atom of isonicotinic acid (Mn—O 208.6(2) — 227.3(3) pm). The connection of Mn2+ and [C6H2(COO)4]4— yields a three-dimensional coordination polymer with two different, channel-like voids extending parallel to [110]. The first channel accomodates water molecules, the second channel is filled by isonicotinic acid molecules. Thermogravimetric analysis in air revealed that the loss of water of crystallisation occurs in two steps between 97 and 200 °C. The dehydrated sample was stable between 200 and 340 °C. Further decomposition yielded Mn3O4.


2020 ◽  
Author(s):  
Roberto Köferstein

Blue monoclinic single crystals of the novel one-dimensional [H3N-(CH2)6-NH3][Cu(H2O)2(urea)(µ2-C6(COO)4 (COOH)2)]*H2O coordination polymer have been prepared in aqueous solution at room temperature in the presence of 1,6-diaminohexane and urea. Space group P21/n (no. 14) with a = 958.48(9), b = 1465.74(11), c = 1821.14(12) pm, beta = 97.655(8)°. The Cu2+ cation is coordinated in a square pyramidal manner by two oxygen atoms stemming from the dihydrogen mellitate tetraanion, one oxygen atom from the urea molecule, and two water molecules. The Cu−O distances are between 193.3(2) and 229.4(2) pm. The connection between Cu2+ and [C6(COO)4(COOH)2]4-


1988 ◽  
Vol 43 (9) ◽  
pp. 1161-1166 ◽  
Author(s):  
Hans-Jürgen Meyer ◽  
Joachim Pickardt

Abstract By diffusion of methanolic solutions of hexamethylenetetramine into aqueous solutions of hexacyanoferrates(III) of sodium and potassium, resp., single crystals of the adducts were ob­tained. Na3[Fe(CN)6] · 2C6H12N4-5H2O, orthorhombic, space group Pca21. Z = 4, a = 14.122(4). b = 14.380(4), c = 14.381(4) Å, 3153 reflections, R = 0.044. K3[Fe(CN)6]•2C6H12N4-4H2O, triclinic, space group P1̄, Z = 4, a = 14.125(4), b = 17.808(4), c =14.116(4) Å, α = 114.14(5), β = 94.91(4), γ = 108.36(5)°. 5550 reflections, R = 0.042. Both structures may be regarded as Elpasolite-Iike arrangements of [Fe(CN)6]3- ions, C6H12N4 molecules and [M2(OH2)x]3+ units (M = Na, K; x = 5, 4), linked together unsymmetrically by M-N contacts of metal ions and nitrogen atoms with mean distances of Na-NHMT = 264 pm. Na-NCYan = 243 pm, K-NHMT = 293 pm and K-Ncyan = 290 pm. Stabilization of the crystal structures is obtained by N---H-O hydrogen bonds of coordination water molecules in three dimensions.


2009 ◽  
Vol 64 (10) ◽  
pp. 1093-1097 ◽  
Author(s):  
Irena Stein ◽  
Uwe Ruschewitz

By slow diffusion of pyridine (py) into an aqueous solution containing the respective metal salt and acetylenedicarboxylic acid (H2ADC), single crystals of coordination polymers of composition 1∞[MII(H2O)2(py)2ADC] with MII = Zn (1) and Cd (2) were obtained. The crystal structures consist of octahedral MIIN2O4 units, which are connected to chains via acetylenedicarboxylate dianions. Hydrogen bonds between O atoms of the dianions and of the water molecules lead to the formation of layers perpendicular to [010]. The structure is further held together by weak aromatic stacking interactions between the pyridine ligands.


2019 ◽  
Author(s):  
Roberto Köferstein

Blue single crystals of Cu[μ3-O3P(CH2)2COOH].2H2O (1) and Cu[(RS)-μ3-O3PCH(C2H5)COOH].3H2O (2) have been prepared in aqueous Cu2+-solutions (pH = 2.5–3.5) containing 3-phosphonopropionic acid (1) and (RS)-2-phosphonobutyric acid (2), respectively. 1: Space group Pbca (no. 61) with a = 812.5(2), b = 919.00(9), c = 2102.3(2) pm. Cu2+ is five-fold coordinated by three oxygen atomsstemming from [O3P(CH2)2COOH]2– anions and two water molecules. The Cu-O bond lengths range from194.0(3) to 231.8(4) pm. The connection between the [O3P(CH2)2COOH]2– anions and the Cu2+ cations yields apolymeric structure with layers parallel to (001). The layers are linked by hydrogen bonds. 2: Space group Pbca(no. 61) with a = 1007.17(14), b = 961.2(3), c = 2180.9(4) pm. The copper cations are surrounded by five oxygen atoms in a square pyramidal fashion with Cu-O bonds between 193.6(4) and 236.9(4) pm. The coordination between [O3PCH(C2H5)COOH]2- and Cu2+ results in infinite puckered layers parallel to (001). The layers are not connected by any hydrogen bonds. Each layer contains both R and S isomers of the [O3PCH(C2H5)COOH]2-dianion. Water molecules not bound to Cu2+ are intercalated between the layers.UV/Vis spectra suggest three d-d transition bands at 743, 892, 1016 nm for 1 and four bands at 741, 838, 957and 1151 nm for 2, respectively. Magnetic measurements suggest a weak antiferromagnetic coupling betweenCu2+ due to a super-superexchange interaction. Thermoanalytical investigations in air show that the compounds are stable up to 95 °C (1) and 65 °C (2), respectively.


1996 ◽  
Vol 51 (10) ◽  
pp. 1469-1472 ◽  
Author(s):  
Joachim Pickardt ◽  
Britta Kühn

Crystals of |Zn(cnge)2(SCN)2]-2H2O (1) were obtained by evaporation of an aqueous solution of Z n(SO4)·7H2O , KSCN, and cyanoguanidine. Crystals of Zn(eoge)Br2 (2) were obtained by reaction of ZnBr2 and cyanoguanidine in ethanol/water. Both compounds are monoclinic, space group C2/c, 1: Z = 4, a = 1919.6(7), b = 467.3(2), c = 1838.5(6) pm, β = 112.99(3)°, 2: Z = 8, a = 1799.5(6), b = 878.7(2), c = 1367.2(5) pm, β = 101.52(3)°. In 1 each Zn is bonded to two cyanoguanidine molecules and via the N atoms to two NCS groups. Intermolecular hydrogen bonds lead to chains along the a-axis, and these chains are again connected via hydrogen bonds to the two crystal water molecules. In the course of the formation of 2, the cyanoguanidine reacted with the ethanol to form 1-ethoxyiminomethylguanidine. This ligand forms chelate rings with the Zn atoms, which are tetrahedrally coordinated by the two imino N atoms of the ligand and by two bromine atoms.


1992 ◽  
Vol 47 (11) ◽  
pp. 1561-1564 ◽  
Author(s):  
Christian Robl ◽  
Stephanie Hentschel

Colourless monoclinic single crystals of Y2[C6(COO)6]· 14H2O were grown in aqueous silica gel (space group P21/n, a = 847.5(1), b = 923.4(2), c = 1632.0(3) pm, β = 100.33(1)°, Ζ = 2, 223 parameters, 1784 reflections, Rg = 0.0357). Y3+ is coordinated by 5 water molecules and 3 oxygen atoms of the mellitate anion in a dodecahedral fashion. Y3+ and [C6(COO)6]6- ions are linked by coordinative bonds, yielding infinite chains of composition Y2(H2O)10[C6(COO)6] extending parallel to [100]. Hydrogen bonds connect adjacent chains.


2019 ◽  
Author(s):  
Roberto Köferstein

Abstract. Colorless single crystals of Cd2[μ8-TB]·3H2O·DMF (1) were prepared in DMF/H2O solution [1: space group C2/c (no. 15) with a = 1821.30(6), b = 2175.08(6), c = 1269.87(4) pm, beta = 129.684(1)°]. The connection between the methane-p-benzoate tetraanions (MTB4–) and the Cd2+ cations leads to a three-dimensional framework with channels extending along [-110] and [110] with openings of 670 pm x 360 pm. The channel-like voids accommodate water molecules and N,N-dimethylformamide (DMF) molecules not bound to Cd2+. Colorless single crystals of[Cd4(2,2'-bipy)4(μ7-MTB)2]·7DMF (2) were prepared in DMF in the presence of 2,2'-bipyridine [2: space group P-1 (no. 2) with a = 1224.84(4), b = 1418.85(5), c = 2033.49(4) pm, alpha = 85.831(2)°, beta = 88.351(2)°, gamma = 68.261(1)°]. The coordination of MTB4– to Cd2+ resultsin infinite layers parallel to (001). The layers, not connected by any hydrogen bonds, contain small openings of about 320 pm x 340 pm.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2007 ◽  
Vol 62 (10) ◽  
pp. 1235-1245 ◽  
Author(s):  
Simone Schnabel ◽  
Caroline Röhr

Stoichiometric hydrates of Li3VO4, the hexahydrate and two polymorphs of the octahydrate, were prepared by evaporation of alkaline aqueous solutions 1 molar in LiOH and 0.5 molar in the metavanadate LiVO3 at r. t. with or without the addition of Lithium sulfide, i. e. at different pH values. Their crystal structures have been determined and refined using single crystal X-ray data; all lithium and hydrogen atom positions were localised and refined without contraints. All three title compounds crystallise in non-centrosymmetric space groups. The water molecules belong to the tetrahedral coordination spheres of the Li cations, i. e. they are embedded as water of coordination exclusively. The tetrahedral orthovanadate(V) anions VO3−4 and the LiO4 tetrahedra are connected via common O corners to form building units which are further held together by strong, nearly linear hydrogen bonds. The hexahydrate Li3VO4 ・ 6H2O (space group R3, a = 962.9(2), c = 869.2(2) pm, Z = 3, R1 = 0.0260) contains isolated orthovanadate(V) anions VO3−4 surrounded by a 3D network of cornersharing Li(H2O)4 tetrahedra forming rings of three, seven and eight units. The water molecules are ‘isolated’ in the sense that no hydrogen bonds are formed between water molecules. The octahydrate is dimorphous: The triclinic polymorph of Li3VO4 ・ 8H2O (space group P1, a = 592.6(2), b = 651.3(2), c = 730.2(4) pm, α = 89.09(2), β = 89.43(2), γ = 88.968(12)°, Z = 1, R1 = 0.0325) contains two types of chains of tetrahedra: One consists of corner-sharing Li(H2O)4 tetrahedra only, the second one is formed by alternating LiO4 and VO4 tetrahedra, also sharing oxygen corners. Only one water molecule is ‘isolated’, the other seven form a branched fragment of a chain with hydrogen bonds between them. In the monoclinic form of Li3VO4・8H2O (space group Pc, a = 732.6(1), b = 653.7(1), c = 1292.9(3) pm, β = 112.21(1)°, Z = 2, R1 = 0.0289) a fragment of a chain of three LiO4 tetrahedra, two of which share a common edge, and one VO4 tetrahedron represent the formular unit. These building blocks are connected via hydrogen bonds formed by three ‘isolated’ water molecules and a chain fragment of five connected water molecules.


Sign in / Sign up

Export Citation Format

Share Document