scholarly journals A Novel One-Dimensional Copper Mellitate Complex Featured by {Cu(H2O)2(urea)[C6(COO)4(COOH)2]}n2n- Polyanions

2020 ◽  
Author(s):  
Roberto Köferstein

Blue monoclinic single crystals of the novel one-dimensional [H3N-(CH2)6-NH3][Cu(H2O)2(urea)(µ2-C6(COO)4 (COOH)2)]*H2O coordination polymer have been prepared in aqueous solution at room temperature in the presence of 1,6-diaminohexane and urea. Space group P21/n (no. 14) with a = 958.48(9), b = 1465.74(11), c = 1821.14(12) pm, beta = 97.655(8)°. The Cu2+ cation is coordinated in a square pyramidal manner by two oxygen atoms stemming from the dihydrogen mellitate tetraanion, one oxygen atom from the urea molecule, and two water molecules. The Cu−O distances are between 193.3(2) and 229.4(2) pm. The connection between Cu2+ and [C6(COO)4(COOH)2]4-

2019 ◽  
Author(s):  
Roberto Köferstein

Blue monoclinic single crystals of the novel one-dimensional [H3N-(CH2)6-NH3][Cu(H2O)2(urea)(μ2-C6(COO)4 (COOH)2)]H2O coordination polymer have beenprepared in aqueous solution at room temperature in the presence of 1,6-diaminohexane andurea. Space group P21/n (no. 14) with a = 958.48(9), b = 1465.74(11), c = 1821.14(12) pm, beta= 97.655(8)°. The Cu2+ cation is coordinated in a square pyramidal manner by two oxygen atoms stemming from the dihydrogen mellitate tetraanion, one oxygen atom from the ureamolecule, and two water molecules. The Cu−O distances are between 193.3(2) and 229.4(2)pm. The connection between Cu2+ and [C6(COO)4(COOH)2]4 yields infinite chain-likepolyanions parallel to [ 01] with a composition of{Cu(H2O)2(urea)[C6(COO)4(COOH)2]}n2n-. The dihydrogen mellitate tetraanion adopts a μ2coordination mode. The [(H3N-(CH2)6-NH3)]2+ cations are accommodated between the chainsas counter cations. The hexane-1,6-diammonium cations adopt a partial synclinal conformation. The chains are connected by strong and weak hydrogen bonds. Magneticmeasurements reveal a paramagnetic Curie-Weiss behaviour and a magnetic moment of 1.93μB per Cu2+. Thermoanalytical investigations in air show that the complex is stable up to 135°C. Following decomposition processes yielding CuO.


2019 ◽  
Author(s):  
Roberto Köferstein

Single crystals of [Mn(H2O)2]4[HNC5H4(COO)]2[C6H2(COO)4]2·4H2O have been prepared in aqueous solution at 55 °C. Space group P-1 (no. 2), a = 999.7(2), b = 1314.4(2), c =1645.8(2) pm, α = 101.096(8)°, β = 92.796(14)°, γ = 96.03(2)°, V = 2.1053(5) nm3, Z = 2.There are four unique Mn2+ which are coordinated in a distorted, octahedral manner by twowater molecules, three oxygen atoms of the pyromellitate anions and one oxygen atom of isonicotinic acid (Mn—O 208.6(2) — 227.3(3) pm). The connection of Mn2+ and [C6H2(COO)4]4— yields a three-dimensional coordination polymer with two different, channel-like voids extending parallel to [110]. The first channel accomodates water molecules, the second channel is filled by isonicotinic acid molecules. Thermogravimetric analysis in air revealed that the loss of water of crystallisation occurs in two steps between 97 and 200 °C. The dehydrated sample was stable between 200 and 340 °C. Further decomposition yielded Mn3O4.


1993 ◽  
Vol 48 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Christian Robl ◽  
Mona Frost

Colourless triclinic single crystals of Na6[TeMo6O24] · 22 H2O were grown from aqueous solution (space group P 1, a = 1030.89(9), b = 1056.7(1), c = 1106.32(9) pm, α = 90.120(7), β = 115.220(6), γ = 105.195(7), Ζ = 1, 295 Κ, 336 parameters, 3181 reflections, Rg = 0.0186). There are three crystallographically independent Na+ cations. Two of them are coordinated octahedrally by water molecules only. The third Na+ cation is bound to five H2O and one oxygen atom (O(4)) belonging to the Anderson-Evans type anion [TeMo6O24]6-. The sodium-centered coordination octahedra are linked by common edges exclusively formed by water molecules to yield chain-like polycations {Na3(H2O)11}n,3n+ which are bound by the Na(1)-O(4) contact to the anions situated on crystallographic centers of inversion forming a layer-like arrangement. Further connections between the polycations and the [TeMo6O24]6- anions are established by hydrogen bonds involving all the oxygen atoms of the anion except O(4) as almost equivalent proton acceptors regardless of their bonding mode to Te or Mo.


2019 ◽  
Author(s):  
Roberto Köferstein

Turquoise monoclinic single crystals of the novel three-dimensional Cu2[μ8-O3P(CH2)2PO3)].3.2H2O coordination polymer have been prepared using the silica gelmethod. Space group C2/m (no. 12) with a = 1483.6(2), b = 668.44(8), c = 436.30(6) pm, beta =93.28(2)°. The Cu2+ cation is coordinated by four oxygen atoms stemming from the 1,2-ethylenediphosphonate dianions in a square planar manner and two water molecules in theaxial positions. The connection between the Cu2+ cations and the [PO3C] units from the 1,2-ethylenediphosphonate dianions leads to layers parallel to (100), which are linked by theethylene groups to a three-dimensional framework with channel-like voids. The voidsaccommodate water molecules not bound to Cu2+ and extend parallel along [001] with anopening of about 550 260 pm. Magnetic measurements reveal an antiferromagneticbehaviour due to a superexchange coupling between Cu2+ ions through an oxygen bridge. TheUV-Vis spectrum reveals three dd transition bands at 694, 774, and 918 nm. The compoundcan be fully dehydrated by thermal treatment and rehydrated by storage in ambient air.


2019 ◽  
Author(s):  
Roberto Köferstein

Triclinic single crystals of Cu2[Cu(H2O)4][(CH2)4(NH3)2][C6H2(COO)4]2·4H2O have beenprepared in aqueous solution at 55 °C. Space group P-1 (no. 2), a = 799.73(7), b = 977.43(8),c = 1086.27(9) pm, α = 87.194(7), β = 84.679(7), γ = 74.744(6)°, V = 0.81540(12) nm3, Z = 1.There are two unique Cu2+ with CN 4+1 (Cu(1)) and CN 4+2 (Cu(2)), respectively. The Cu-Odistances range from 197.4(2) to 214.9(2) pm (Cu(1)) and 191.6(2) to 240.1(4) pm (Cu(2)).There is a short Cu(1)-Cu(1) contact of 267.02(6) pm. A three-dimensional coordinationpolymer with negative excess charge and channel-like voids extending parallel to [-110] ismade up by Cu2+ and [C6H2(COO)4]4-. These voids accomodate [(CH2)4(NH3)2]2+ and watermolecules, which are not coordinated to Cu2+. Thermoanalytical measurements in airindicated a step-wise loss of water of crystallization commencing at 63 °C, which is finishedat approx. 250 °C followed by an exothermic decomposition yielding CuO. The Cu(1) pairsshow anti-ferromagnetic coupling.


2019 ◽  
Author(s):  
Roberto Köferstein

Monoclinic single crystals of Cd(H2O)2[C6H3(COO)2(COOH)] have been prepared in aqueoussolution at 80 °C. Space group C2/c (no. 15), a = 1973.0(2), b = 910.74(7), c = 1336.81(10)pm, β = 117.897(8)°, V = 2.1230(3) nm3, Z = 8. Cd2+ is coordinated in a moderately distortedpentagonal bipyramidal fashion by five oxygen atoms stemming from themonohydrogentrimesinate anions in the equatorial plane and two water molecules in theapical positions (Cd–O 224.0(2) – 255.0(2) pm). The connection of Cd2+ with[C6H3(COO)2(COOH)]2− yields a two-dimensional coordination polymer. The atoms of themonohydrogentrimesinate anion form in good approximation a common plane.Thermogravimetric analysis in air shows that the dehydrated compound is stable up to 390°C. Further decomposition yields CdO.


2019 ◽  
Author(s):  
Roberto Köferstein

Monoclinic single crystals of Co[(C6H10)(NH3)2][C6H2(COO)4] · 2H2O have been prepared inaqueous solution at 80 °C. Space group C2/c (no. 15), a = 1065.92(8), b = 1568.97(9), c =1140.88(9) pm, β = 90.101(6)°, V = 1.9080(2) nm3, Z = 4. Co2+, which is situated on atwofold crystallographic axis, is coordinated in a moderately distorted tetrahedral fashion byfour oxygen atoms stemming from the pyromellitate anions (Co-O 197.87(12) and 200.64(12)pm). A three-dimensionally connected coordination polymer is made up by Co2+ andC6H2(COO)44- featuring channel-like voids, which accomodate water molecules and(C6H10)(NH3)22+ cations compensating for the negative excess charge of the three-dimensionalframework. Thermogravimetric analysis in air showed that the dehydrated compound wasstable between 198 and 361 °C. Further decomposition yielded CoO.Zn[(C6H12)(NH3)2][C6H2(COO)4]·1/2H2O (2) was prepared analogously to 1 employing 1, 6-diaminohexane. Space group P21/n (no. 14), a = 1087.78(8), b = 1515.18(11), c = 1162.21(10)pm, β=96.249(7)°, V = 1.9042(3) nm3, Z = 4. Zn2+ is coordinated tetrahedrally like Co2+ byoxygen atoms of the pyromellitate anions (Zn—O 195.0(4) - 197.8(4)). The connection ofZn2+ with the anions leads similar to 1 to a three-dimensional framework with voidsaccomodating (C6H12)(NH3)22+-cations and water molecules. 2 was stable anhydrouslybetween approx. 120 and 340 °C, the further decomposition was completed at 700 °C yieldingZnO.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


2019 ◽  
Author(s):  
Roberto Köferstein

Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in anaqueous silica gel. Space group P-1 (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms ofthe pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm;Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4− yields infinite strands,which are linked by pyrazine molecules to form a two-dimensional coordination polymer.Thermogravimetric analysis in air showed that the dehydrated compound was stable between175 and 248 °C. Further heating yielded CuO.


Sign in / Sign up

Export Citation Format

Share Document