Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
Abstract In the present work, halloysite nano-clay (HNTs) based hydrogel was fabricated and their efficiency for the removal of methylene blue dye was studied. The hydrogel films were prepared with varying amount of halloysite nano-clay via facile solution casting method. Effect of halloysite clay on adsorption performance of composite was investigated. The hydrophobic thermoplastic synthetic polymer, polylactic acid (PLA) was blended with hydrophilic polymer polyvinyl alcohol (PVA) and HNTs to synthesize hydrogels. Swelling behavior and antimicrobial efficiency was also evaluated. The halloysite incorporating films showed excellent antibacterial activity. Swelling capacity of hydrogel with increased halloysite content was reduced due to increased crosslinking among polymer chains. Halloysite incorporated hydrogel exhibited higher adsorption ability as compared to film comprising of only PVA and PLA and dye removal followed pseudo first order kinetics. Film with 0.03 g HNTs rapidly attained adsorption-desorption equilibria and removed the dye completely within 30 min. Results confirmed that synthesized film could be potentially used for the removal of cationic dye and fabricated hydrogel film have promising potential for wastewater treatment since a higher adsorption capacity was observed for halloysite nano-clay incorporated hydrogel.