hydrolyzed polyacrylamide
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 85)

H-INDEX

34
(FIVE YEARS 7)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122299
Author(s):  
Cláudia K.B. de Vasconcelos ◽  
Felipe S. Medeiros ◽  
Bruna R.S. Diniz ◽  
Marcelo M. Viana ◽  
Vinicius Caliman ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Gang Lu ◽  
Jikuan Zhao ◽  
Shaoqi Li ◽  
Yuquan Chen ◽  
Chunfang Li ◽  
...  

Partially hydrolyzed polyacrylamide (HPAM) was widely implemented to improve the rheological properties of displacing fluids, but the high temperature and salinity of the reservoir brine limited their applications. Herein, copolymers including HPAM, zwitterion-modified HPAM (z-HPAM), PEG-modified HPAM (p-HPAM), and zwitterion/PEG-modified HPAM (zp-HPAM) were prepared by free radical polymerization in an aqueous solution. The viscosity of these copolymers under different temperature and salinity was measured in aqueous solution. It is found that the viscosity of the HPAM under the harsh condition (90oC, 20 × 104 mg/L salinity) is only 9.6% of that value under the normal condition (25oC, pure water), while the z-HPAM can significantly improve salt resistance by the effects of salting-in effect and intermolecular electrostatic crosslinking, showing a viscosity retention of 22.9% under the harsh condition. The addition of PEG-containing monomer can strengthen hydrogen bonding between the polymer chains and form a sterically ordered structure with improved salinity and temperature resistance. The synergistic effect of zwitterion units and PEG units endows the zp-HPAM with good salinity and temperature resistance; thus, the sample viscosity under the harsh condition remains 170 mPa s, which retains 29% of the value under the normal condition. The enhanced rheology properties of the zp-HPAM under the harsh condition are significant for the enhanced oil recovery of water-soluble polymer flooding.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7468
Author(s):  
Xiaoqin Zhang ◽  
Bo Li ◽  
Feng Pan ◽  
Xin Su ◽  
Yujun Feng

Water-soluble polymers, mainly partially hydrolyzed polyacrylamide (HPAM), have been used in the enhanced oil recovery (EOR) process. However, the poor salt tolerance, weak thermal stability and unsatisfactory injectivity impede its use in low-permeability hostile oil reservoirs. Here, we examined the adaptivity of a thermoviscosifying polymer (TVP) in comparison with HPAM for chemical EOR under simulated conditions (45 °C, 4500 mg/L salinity containing 65 mg/L Ca2+ and Mg2+) of low-permeability oil reservoirs in Daqing Oilfield. The results show that the viscosity of the 0.1% TVP solution can reach 48 mPa·s, six times that of HPAM. After 90 days of thermal aging at 45 °C, the TVP solution had 71% viscosity retention, 18% higher than that of the HPAM solution. While both polymer solutions could smoothly propagate in porous media, with permeability of around 100 milliDarcy, TVP exhibited stronger mobility reduction and permeability reduction than HPAM. After 0.7 pore volume of 0.1% polymer solution was injected, TVP achieved an incremental oil recovery factor of 13.64% after water flooding, 3.54% higher than that of HPAM under identical conditions. All these results demonstrate that TVP has great potential to be used in low-permeability oil reservoirs for chemical EOR.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7639
Author(s):  
Ekaterina Leusheva ◽  
Valentin Morenov ◽  
Tianle Liu

Construction of offshore gas wells is characterized by increased requirements for both the technological process in general and the technological parameters of drilling fluids in particular. Parameters and properties of the used drilling muds must meet a large number of requirements. The main one is the preservation of the permeability of the reservoirs, in addition to the environmental and technological concerns. At the same time, pressures in the productive formation at offshore fields are often high; the anomaly coefficient is 1.2 and higher. The use of barite in such conditions can lead to contamination of the formation and a decrease in future well flow rates. In this regard, the development and study of the compositions for weighted drilling muds is necessary and relevant. The paper presents investigations on the development of such a composition based on salts of formic acid (formates) and evaluates the effect of the molecular weight of the polymer reagent (partially hydrolyzed polyacrylamide) on the equivalent circulation density of the drilling fluid. The result of the work is a formate-based high-density drilling mud with no barite added. Application of such a mud will preserve the permeability of the productive formation.


SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Tao Song ◽  
Qi Feng ◽  
Thomas Schuman ◽  
Jie Cao ◽  
Baojun Bai

Summary Excessive water production from oil reservoirs not only affects the economical production of oil, but it also results in serious environmental concerns. Polymer gels have been widely applied to decrease water production and thus improve oil production. However, traditional polymer gels such as partially hydrolyzed polyacrylamide (HPAM)/chromium (III) gel systems usually have a short gelation time and cannot meet the requirement of some conformance control projects. This paper introduces a novel polymer gel system of which crosslinking time can be significantly delayed. A branched polymer grafted from arginine by the surface initiation method is synthesized as the backbone, chromium acetate is used as the crosslinker, and no additional additives are used for the gel system. The results show that the gelation time of this system can be delayed to 61 days at 45°C and 20 days at 65°C because of the rigid structure of the branched polymer and the excellent chromium (III) chelating ability of arginine. The polymer gels have been stable for more than 150 days at 45 and 65°C. Coreflooding and rheology tests have demonstrated that this branched polymer has good injectivity and shear resistance in high-permeabilityrocks.


Author(s):  
Iman Nowrouzi ◽  
Amir H. Mohammadi ◽  
Abbas Khaksar Manshad

AbstractSurfactants are among the materials used to improve water properties for injection into oil reservoirs, and reduce injection phase and crude oil interfacial tension (IFT). Recently, the interest in the use of natural surfactants has increased and is constantly on the rise to solve some challenges of using chemical surfactants such as incompatibility with the environment and the high cost. In this study, we have used aqueous extract of powdered leaf of Myrtus communis as an available source of natural surfactant. The extracted surfactant was characterized by TGA, 1H NMR and FTIR techniques. The surfactant efficiency was demonstrated by performing some experiments including IFT and injection of chemical slug and surfactant into carbonate plugs. The surfactant adsorption on carbonate rock was also studied. It was observed that this natural surfactant can reduce IFT to 0.861 mN/m at surfactant critical micelle concentration (CMC) of 5000 ppm. This minimum IFT was further reduced at optimum salinity and alkali. Finally, an increase of 14.3% oil recovery by surfactant flooding and 16.4% oil recovery by ASP slug injection containing NaOH alkali and partially hydrolyzed polyacrylamide (PHPA) polymer with 0.5 PV volume from carbonate plugs was achieved.


Sign in / Sign up

Export Citation Format

Share Document