Prediction of Stress-Strain Response under General Multiaxial Loading

Author(s):  
YS Garud
Author(s):  
Nicholas R. Gates ◽  
Ali Fatemi

Accurate estimation of material stress–strain response is essential to many fatigue life analyses. In cases where variable amplitude loading conditions exist, the ability to account for transient material deformation behavior can be particularly important due to the potential for periodic overloads and/or changes in the degree of nonproportional stressing. However, cyclic plasticity models capable of accounting for these complex effects often require the determination of a large number of material constants. Therefore, an Armstrong–Frederick–Chaboche style plasticity model, which was simplified in a previous study, was extended in the current study to account for the effects of both general cyclic and nonproportional hardening using a minimal number of material constants. The model was then evaluated for its ability to predict stress–strain response under complex multiaxial loading conditions by using experimental data generated for 2024-T3 aluminum alloy, including a number of cyclic incremental step tests. The model was found to predict transient material response within a fairly high overall level of accuracy for each loading history investigated.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


1990 ◽  
Vol 6 (2) ◽  
pp. 207-230 ◽  
Author(s):  
Han C. Wu ◽  
Paul T. Wang ◽  
W.F. Pan ◽  
Z.Y. Xu

2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


2002 ◽  
Vol 37 (3) ◽  
pp. 187-199 ◽  
Author(s):  
H. J Kim ◽  
J. S Kim ◽  
M. E Walter ◽  
J. K Lee

Intumescent mat materials in catalytic converters undergo chemical reactions that lead to material property changes and volume expansion during heating processes. Dead weight (load control) and displacement control compression experiments have been performed to explore static and transient stress-strain responses. The apparatus and methods for both experiments are described. The experimental results together with a strain decomposition procedure yield a master curve that can be employed for constitutive modelling.


2015 ◽  
Vol 76 ◽  
pp. 522-527
Author(s):  
M. Shamil Jaffarullah ◽  
Nur’Amirah Busu ◽  
Cheng Yee Low ◽  
J.B. Saedon ◽  
Armansyah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document