On guaranteed eigenvalue estimation of compact differential operator with singularity

2014 ◽  
Vol 1 ◽  
pp. 812-815
Author(s):  
Xuefeng LIU ◽  
Shin'ich OISHI
2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2020 ◽  
Vol 9 (8) ◽  
pp. 5343-5348 ◽  
Author(s):  
T. G. Shaba ◽  
A. A. Ibrahim ◽  
M. F. Oyedotun

Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2457-2469
Author(s):  
Akhilesh Prasad ◽  
S.K. Verma

In this article, weintroduce a new index transform associated with the cone function Pi ??-1/2 (2?x), named as Mehler-Fock-Clifford transform and study its some basic properties. Convolution and translation operators are defined and obtained their estimates under Lp(I, x-1/2 dx) norm. The test function spaces G? and F? are introduced and discussed the continuity of the differential operator and MFC-transform on these spaces. Moreover, the pseudo-differential operator (p.d.o.) involving MFC-transform is defined and studied its continuity between G? and F?.


2017 ◽  
Vol 11 (4) ◽  
pp. 570-576 ◽  
Author(s):  
Yuteng Zheng ◽  
Yanwen Zhao ◽  
Qiangming Cai ◽  
Miaomiao Jia ◽  
Zaiping Nie

Sign in / Sign up

Export Citation Format

Share Document