Evaluating the effects of cellulolytic enzymes and Lactobacillus bulgaricus on mycotoxins production and the quality of maize silage
Fungal spoilage and mycotoxin contamination are two of the greatest hazards of silage. The present work was carried out to evaluate the impact of Lactobacillus bulgaricus and cellulolytic enzymes on the maize silage (MS) quality. Fungal analysis of different MS samples showed different mycotoxigenic fungi. The highest frequency (62.8%) was associated with Fusarium spp. Four species with different relative densities were found: F. graminearum (71.1%), F. culmorum (15.2%), F. proliferatum (11.2%), and F. oxysporum (2.50 %). High-performance liquid chromatography analysis showed the presence of trichothecene, nivalenol, zearalenone, and fumonisins mycotoxins in MS inoculated by F. graminearum. The inhibition % of trichothecene, nivalenol, and zearalenone synthesis was 50.2%, 47.5%, and 23.5%, respectively, in MS inoculated by Lactobacillus bulgaricus after a 30 d incubation period. Trichoderma harzianum succeeded in producing cellulolytic enzymes, i.e., carboxymethyl cellulase, manganase peroxidase, and laccase, with a maximum production of 350 µg/mL, 5.47 µg/mL, and 16.0 µg/mL, respectively, after 21 d using MS as the substrate. Treatment by the extracted cellulolytic enzyme with L. bulgaricus enhanced unfavorable conditions for MS fungal contamination, i.e., the production of lactic acid, a lowered pH, and increased L. bulgaricus colony-forming units, compared to the addition of enzyme extract or L. bulgaricus alone.