Application progress of microbial immobilization technology based on biomass materials

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8509-8524
Author(s):  
Zeyu Zhang ◽  
Zheng Fan ◽  
Guoliang Zhang ◽  
Lei Qin ◽  
Jie Fang

In recent years, microbial degradation technology has shown broad potential in the fields of agriculture, industry, and environmental protection. However, in practical applications the technology still encounters many problems, such as low bacterial survivability during dynamic operations, the need to remove bacterial liquid, and low tolerance in high-toxic environments, among other issues. Immobilization technology has been developed to overcome such limitations. Microbial strains have been prepared for a specific range of activities utilizing self-fixation or exosome fixation. Immobilization can significantly improve strain density, toxicity tolerance, and bacterial liquid removal. This review first presents the advantages and disadvantages of the current microbial immobilization technologies and then summarizes the properties and characteristics of various carrier materials. The review focuses on how biomass-derived materials have been used as the carriers in new microbial immobilization technologies. The excellent biocompatibility, unique physical structure, and diversified modification methods of biomass-derived materials have shown excellent prospects in the field of microbial immobilization. Finally, microbial immobilization technologies’ potential applications in agriculture, industry, and environmental applications are considered.

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8509-8524
Author(s):  
Zeyu Zhang ◽  
Zheng Fan ◽  
Guoliang Zhang ◽  
Lei Qin ◽  
Jie Fang

In recent years, microbial degradation technology has shown broad potential in the fields of agriculture, industry, and environmental protection. However, in practical applications the technology still encounters many problems, such as low bacterial survivability during dynamic operations, the need to remove bacterial liquid, and low tolerance in high-toxic environments, among other issues. Immobilization technology has been developed to overcome such limitations. Microbial strains have been prepared for a specific range of activities utilizing self-fixation or exosome fixation. Immobilization can significantly improve strain density, toxicity tolerance, and bacterial liquid removal. This review first presents the advantages and disadvantages of the current microbial immobilization technologies and then summarizes the properties and characteristics of various carrier materials. The review focuses on how biomass-derived materials have been used as the carriers in new microbial immobilization technologies. The excellent biocompatibility, unique physical structure, and diversified modification methods of biomass-derived materials have shown excellent prospects in the field of microbial immobilization. Finally, microbial immobilization technologies’ potential applications in agriculture, industry, and environmental applications are considered.


Author(s):  
Fang Li ◽  
V.I. Dubovyk ◽  
Runqiang Liu

Pesticide was widely used in agriculture industry to ensure the crops’ yield and quality, followed that pesticide pollution had become one of the most serious issues for public health in the world. Therefore, it’s necessary to develop mathematical models for the prediction of pesticide degradation and residue. In this paper, we introduced four kinds of mathematical models in pesticide prediction, and offered the basis theories and practical applications for each model. Then we compared their advantages and disadvantages systematically by analyzing the roles of each one. Finally, present challenges and future perspectives in pesticide residue prediction fields were discussed.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2020 ◽  
Vol 36 (2) ◽  
pp. 265-310 ◽  
Author(s):  
Morteza Asghari ◽  
Amir Dashti ◽  
Mashallah Rezakazemi ◽  
Ebrahim Jokar ◽  
Hadi Halakoei

AbstractArtificial neural networks (ANNs) as a powerful technique for solving complicated problems in membrane separation processes have been employed in a wide range of chemical engineering applications. ANNs can be used in the modeling of different processes more easily than other modeling methods. Besides that, the computing time in the design of a membrane separation plant is shorter compared to many mass transfer models. The membrane separation field requires an alternative model that can work alone or in parallel with theoretical or numerical types, which can be quicker and, many a time, much more reliable. They are helpful in cases when scientists do not thoroughly know the physical and chemical rules that govern systems. In ANN modeling, there is no requirement for a deep knowledge of the processes and mathematical equations that govern them. Neural networks are commonly used for the estimation of membrane performance characteristics such as the permeate flux and rejection over the entire range of the process variables, such as pressure, solute concentration, temperature, superficial flow velocity, etc. This review investigates the important aspects of ANNs such as methods of development and training, and modeling strategies in correlation with different types of applications [microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), etc.]. It also deals with particular types of ANNs that have been confirmed to be effective in practical applications and points out the advantages and disadvantages of using them. The combination of ANN with accurate model predictions and a mechanistic model with less accurate predictions that render physical and chemical laws can provide a thorough understanding of a process.


2006 ◽  
Vol 532-533 ◽  
pp. 333-336 ◽  
Author(s):  
Bok Choon Kang ◽  
Chathura Nalendra Herath ◽  
Jong Kwang Park ◽  
Yong Hwang Roh

Carbon, aramid and glass fibers are inherently superior to conventional textile fibers in terms of mechanical properties and other characteristics. However, each material has its inherent advantages and disadvantages and it is usually recommended to hybridize them to fully benefit of their high performance in practical applications to many products. This paper is concerned with an air texturing process for hybridization of different reinforcement filament yarns. A normal air texturing machine was selected for process development and modified to suit testing purposes. The modified process for hybridization was introduced mainly in terms of air-jet nozzles employed in experiments. With the proposed air texturing process machine, three types of air-nozzle were applied to the experimental work. Three different filament materials were employed in experiments and they are carbon (CF), aramid (AF), and glass (GF). As matrix materials, polyether-ether (PEEK), polyester (PES), and polypropylene (PP) were selected and experimented. Hybrid yarns produced form the proposed process was evaluated optically in terms of bulkiness, arranging, breaking, and mixing, respectively. The experimental results were also summarized in terms of relationships between applied air pressure and yarn count, and variation in count. As a whole, it was concluded from the experiments that the proposed texturing process could be successfully applied to the practical hybridization of different reinforcement filament yarns. It was also revealed from the experiments that the air pressure in the proposed process is not a significant parameter on the pressing in terms of yarn count.


2018 ◽  
Vol 13 (1) ◽  
pp. 36
Author(s):  
Mayyadah Fahmi Hussein

The new learning processes should be piloted therefore; Interior design schools should be updated according to the results of progress in teaching methods. For this reason, the objective of this study is to define the formulation of a mixed learning model for mathematics applications and technical models within the interior educational system. This paper’s main objective is to find explanations of incorporating the cotemporary interior design within the Mathematics & Modular art content, and to seek modern solutions featuring as new methods. This paper was carried out by experimental procedure in University of Petra/Department of Interior Design based on basic design courses in the academic years 2011-2012 where the researcher took a sample of ten student forms based on the models which were chosen in this experiment combining both difficulty & ease. The students have completed these ten shapes by altering mathematical approach (Latin square) to create a new pattern design. Art with Mathematical approaches have been applied in different practical applications as a basic design tool, and conclusions have been reached on the merits of the design. The advantages and disadvantages of teaching interior design have been introduced from Art & mathematical perspective as a method of design based on the results found during the practical applications of basic design projects and from information in publications on the subject. Relying on these proposed models, the proposals will constantly develop design tools. In conclusion, educating future designers to digest the essence of these approaches will make it possible to train professionals who correctly use and understand the developed technologies that can create futuristic designs.


2018 ◽  
Vol 25 (6) ◽  
pp. 1059-1073 ◽  
Author(s):  
Weifeng Chen ◽  
Hu Weimin ◽  
Dejiang Li ◽  
Shaona Chen ◽  
Zhongxu Dai

AbstractGraphene (graphene) is a new type of two-dimensional inorganic nanomaterial developed in recent years. It can be used as an ideal inorganic nanofiller for the preparation of polymer nanocomposites because of its high mechanical strength, excellent electrical conductivity and plentiful availability (from graphite). In this review, the preparation methods of graphene/polymer nanocomposites, including solution blending, melt blending and in situ polymerization, are introduced in order to study the relationship between these methods and the final characteristics and properties. Each method has an influence on the final characteristics and properties of the nanocomposites. The advantages and disadvantages of these methods are discussed. In addition, a variety of nanocomposites with different properties, such as mechanical properties, electronic conductivity, thermal conductivity and thermal properties, are summarized comprehensively. The potential applications of these nanocomposites in conductive materials, electromagnetic shielding materials, photocatalytic materials and so on, are briefly presented. This review demonstrates that polymer/graphene nanocomposites exhibit superior comprehensive performance and will be applied in the fields of new materials and novel devices. Future research directions of the nanocomposites are also presented.


Author(s):  
Vandana ◽  
Navdeep Kaur

The digitalization has been challenged with the security and privacy aspects in each and every field. In addition to numerous authentication methods, biometrics has been popularized as it relies on one’s individual behavioral and physical characters. In this context, numerous unimodal and multimodal biometrics have been proposed and tested in the last decade. In this paper, authors have presented a comprehensive survey of the existing biometric systems while highlighting their respective challenges, advantage and limitations. The paper also discusses the present biometric technology market value, its scope, and practical applications in vivid sectors. The goal of this review is to offer a compact outline of various advances in biometrics technology with potential applications using unimodal and multimodal bioinformatics are discussed that would prove to offer a base for any biometric-based future research.


2020 ◽  
Vol 10 (8) ◽  
pp. 2786 ◽  
Author(s):  
Hoofar Shokravi ◽  
Hooman Shokravi ◽  
Norhisham Bakhary ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

Structural health monitoring (SHM) is the main contributor of the future’s smart city to deal with the need for safety, lower maintenance costs, and reliable condition assessment of structures. Among the algorithms used for SHM to identify the system parameters of structures, subspace system identification (SSI) is a reliable method in the time-domain that takes advantages of using extended observability matrices. Considerable numbers of studies have specifically concentrated on practical applications of SSI in recent years. To the best of author’s knowledge, no study has been undertaken to review and investigate the application of SSI in the monitoring of civil engineering structures. This paper aims to review studies that have used the SSI algorithm for the damage identification and modal analysis of structures. The fundamental focus is on data-driven and covariance-driven SSI algorithms. In this review, we consider the subspace algorithm to resolve the problem of a real-world application for SHM. With regard to performance, a comparison between SSI and other methods is provided in order to investigate its advantages and disadvantages. The applied methods of SHM in civil engineering structures are categorized into three classes, from simple one-dimensional (1D) to very complex structures, and the detectability of the SSI for different damage scenarios are reported. Finally, the available software incorporating SSI as their system identification technique are investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Shuo Chen ◽  
Guo-Sai Liu ◽  
Hong-Wei He ◽  
Cheng-Feng Zhou ◽  
Xu Yan ◽  
...  

Surface wettability of a film plays a critical role in its practical applications. To control the surface wettability, modification on the physical surface structures has been a useful method. In this paper, we reported the controlling physical surface structure of polyvinyl butyral (PVB) films by different film-forming methods, spin-coating, bar-coating, and electrospinning. The wettability of these PVB films was examined, and the surface morphologies and roughness were investigated. The results indicated that coating PVB films were hydrophilic, while electrospun films were hydrophobic. The physical surface structure was the key role on the interesting transition of their surface wettability. Theoretical analyses on these results found that the coating PVB films showed different mechanism with electrospun ones. These results may help to find the way to control the PVB film surface wettability and then guide for applications.


Sign in / Sign up

Export Citation Format

Share Document