An Air Texturing Process for Hybridization of Different Reinforcement Filament Yarns by Commingling Process

2006 ◽  
Vol 532-533 ◽  
pp. 333-336 ◽  
Author(s):  
Bok Choon Kang ◽  
Chathura Nalendra Herath ◽  
Jong Kwang Park ◽  
Yong Hwang Roh

Carbon, aramid and glass fibers are inherently superior to conventional textile fibers in terms of mechanical properties and other characteristics. However, each material has its inherent advantages and disadvantages and it is usually recommended to hybridize them to fully benefit of their high performance in practical applications to many products. This paper is concerned with an air texturing process for hybridization of different reinforcement filament yarns. A normal air texturing machine was selected for process development and modified to suit testing purposes. The modified process for hybridization was introduced mainly in terms of air-jet nozzles employed in experiments. With the proposed air texturing process machine, three types of air-nozzle were applied to the experimental work. Three different filament materials were employed in experiments and they are carbon (CF), aramid (AF), and glass (GF). As matrix materials, polyether-ether (PEEK), polyester (PES), and polypropylene (PP) were selected and experimented. Hybrid yarns produced form the proposed process was evaluated optically in terms of bulkiness, arranging, breaking, and mixing, respectively. The experimental results were also summarized in terms of relationships between applied air pressure and yarn count, and variation in count. As a whole, it was concluded from the experiments that the proposed texturing process could be successfully applied to the practical hybridization of different reinforcement filament yarns. It was also revealed from the experiments that the air pressure in the proposed process is not a significant parameter on the pressing in terms of yarn count.

2007 ◽  
Vol 539-543 ◽  
pp. 974-978
Author(s):  
Chathura Nalendra Herath ◽  
Beong Bok Hwang ◽  
B.S. Ham ◽  
Jung Min Seo ◽  
Bok Choon Kang

Carbon, aramid and glass fibers are inherently superior to conventional textile fibers in terms of mechanical properties as well as other chemical characteristics. Because of inherent advantages and disadvantages associated with each material, it is generally better to hybridize them to fully benefit of their high performance in many practical applications. In this paper, the possibility of hybridizing Carbon/Aramid-, Carbon/Glass- and Aramid/Glass- matrices has been investigated through the commingling process. In the experiment, several process parameters were selected and they include pressure, yarn oversupply-rate and different nozzle types. As a result of experiments, it was concluded that the hybridized materials has shown better performance than individual reinforced filament yarns in terms of mechanical properties. For small tensile forces, the Carbon/Glass/matrix combination turned out to be good enough for general purpose applications. However, for high tensile applications, Carbon/Aramid or Aramid/Glass with matrix combinations was better than the other material combinations. The hybridization process was also investigated under an air pressure of 5 bar, a yarn oversupply-rate of 1.5% for reinforced filaments, and 3.5% to 6% for matrix materials, respectively. It was also shown from the experimental results that Carbon/Glass/matrix combination may be desirable for small tensile force applications and Carbon/Aramid/matrix and Glass/Aramid/matrix combinations most suitable for heavy tensile force applications, respectively. As a matrix material, polypropylene and polyester have shown better performance than polyether-ether-keeton in terms of tensile property.


Author(s):  
Troy Munro ◽  
Changhu Xing ◽  
Heng Ban ◽  
Cameron Copeland ◽  
Randolph Lewis ◽  
...  

Fiber thermal characterization is often accomplished by indirect means, such as embedding the fiber in a matrix, measuring the thermal response of the composite, and relating for the contributions of the fiber and matrix to the overall behavior or measuring bundles of fibers. To improve the accuracy of the composite-based or bundle-based techniques, several different contact (hot wire and dc thermal bridge) and non-contact (Raman shift and IR thermography) methods have been developed to directly measure the thermal properties of individual fibers. To improve on the shortcomings of these methods, this paper presents the experimental results of an improved transient electrothermal (TET) method, as well as a 3ω-based method that better accounts for all sources of heat transfer, particularly heat loss by radiation. The incorporation of radial radiation heat loss becomes a significant factor as the size of the fibers decrease. This work describes practical applications of the methods to measure the properties of the fibers, including sample preparation for electrically conductive and non-conductive samples, data acquisition and calibration, data analysis, and sample property determination. Results include validation of the methods with electrically conductive (platinum) and non-conductive (glass) fibers to improve upon the initial validation of the generalized electrothermal method which focused only on short, conductive fibers. The axial thermal conductivity and diffusivity of several high performance fibers are presented. The novelty of this paper is that it serves as both a compilation of previous research on the transient electrothermal and 3ω methods [1–6], measurements of new silk fibers, and practical information associated with the methods that improve the accuracy of the measured thermal property, as well as presenting thermal properties of additional fibers (carbon fiber and natural and synthetic spider silks). To improve upon the long sample preparation time required for the TET and 3ω methods, future work focused on the development of a quantum dot-based photothermal fluorescence method is presented.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


1997 ◽  
Vol 67 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Rangaswamy Rajamanickam ◽  
Steven M. Hansen ◽  
Sundaresan Jayaraman

A computer simulation approach for engineering air-jet spun yarns is proposed, and the advantages of computer simulations over experimental investigations and stand-alone mathematical models are discussed. Interactions of the following factors in air-jet spun yarns are analyzed using computer simulations: yarn count and fiber fineness, fiber tenacity and fiber friction, fiber length and fiber friction, and number of wrapper fibers and wrap angle. Based on the results of these simulations, yarn engineering approaches to optimize strength are suggested.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


2020 ◽  
Vol 36 (2) ◽  
pp. 265-310 ◽  
Author(s):  
Morteza Asghari ◽  
Amir Dashti ◽  
Mashallah Rezakazemi ◽  
Ebrahim Jokar ◽  
Hadi Halakoei

AbstractArtificial neural networks (ANNs) as a powerful technique for solving complicated problems in membrane separation processes have been employed in a wide range of chemical engineering applications. ANNs can be used in the modeling of different processes more easily than other modeling methods. Besides that, the computing time in the design of a membrane separation plant is shorter compared to many mass transfer models. The membrane separation field requires an alternative model that can work alone or in parallel with theoretical or numerical types, which can be quicker and, many a time, much more reliable. They are helpful in cases when scientists do not thoroughly know the physical and chemical rules that govern systems. In ANN modeling, there is no requirement for a deep knowledge of the processes and mathematical equations that govern them. Neural networks are commonly used for the estimation of membrane performance characteristics such as the permeate flux and rejection over the entire range of the process variables, such as pressure, solute concentration, temperature, superficial flow velocity, etc. This review investigates the important aspects of ANNs such as methods of development and training, and modeling strategies in correlation with different types of applications [microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), etc.]. It also deals with particular types of ANNs that have been confirmed to be effective in practical applications and points out the advantages and disadvantages of using them. The combination of ANN with accurate model predictions and a mechanistic model with less accurate predictions that render physical and chemical laws can provide a thorough understanding of a process.


Nanophotonics ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 663-679 ◽  
Author(s):  
Francesco Chiavaioli ◽  
Francesco Baldini ◽  
Sara Tombelli ◽  
Cosimo Trono ◽  
Ambra Giannetti

AbstractOptical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.


Sign in / Sign up

Export Citation Format

Share Document