scholarly journals Simulation of transients in ads reactors in three-dimensional geometry

2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
José Rafael Nicolao Carneiro ◽  
Zelmo Rodrigues De Lima ◽  
Alessandro Da Cruz Gonçalves

Accelerator-Driven System, ADS, belong to the new generation of advanced reactors being developed that promise to drastically reduce the life of radioactive waste by, for example, the transmutation process. Subcritical reactor designs of the ADS type have attracted worldwide attention and are the subject of research and development in several countries. The purpose of this work is to simulate transients associated with ADS. It adopted the neutron diffusion model that leads the spatial kinetics equations. These equations are solved by the known numerical method of finite differences. The simulations are performed considering transients related to the variations in the intensity of the proton flux provided by the particle accelerator acting in a sub-critical reactor in three-dimensional geometry for two energy groups and six groups of delayed neutron precursors.

2020 ◽  
Vol 1485 ◽  
pp. 012001
Author(s):  
Sudarmono ◽  
Suwoto ◽  
A. Rohanda ◽  
EP. Hastuti ◽  
Y. Kasezas

Author(s):  
Yao Xiao ◽  
Dalin Zhang ◽  
Zhangpeng Guo ◽  
Suizheng Qiu

Molten salt reactors (MSRs) have seen a marked resurgence of interest over the past few decades, highlighted by their inclusion as one of the six Generation IV reactor types. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this paper, the attention is focused on the behaviors of a MSR in the presence of localized perturbations caused by fissile precipitates. A neutron kinetic model considering the fuel salt flow is established based on the neutron diffusion theory, which consists of two-group neutron diffusion equations for the fast and thermal neutron fluxes and six-group balance equations for delayed neutron precursors, and the group constants dependent on the temperature are calculated by the code DRAGON. In addition, the k-epsilon turbulent model is adopted to establish the flow and heat transfer. The thermo-hydraulic and neutronic models which are coupled through the temperature, heat source and velocity are coded in a program. The effects of the localized perturbation on the distributions of power, temperature, neutron fluxes and delayed neutron precursors are obtained and discussed in detail. The results provide some valuable information for the research and design of this new generation reactor.


1999 ◽  
Author(s):  
V. A. Arkhipov ◽  
V. S. Barashenkov ◽  
V. S. Buttsev ◽  
D. Chultem ◽  
S. Yu. Dudarev ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Kang Chen ◽  
Yongwei Yang ◽  
Yucui Gao

For the China Initiative Accelerator Driven System (CIADS), the energy of the protons is 250 MeV, and the current intensity will reach 10 milliamperes. A new concept of a dense granular spallation target is proposed for which the tungsten granules are chosen as the target material. After being bombarded with the accelerated protons from the accelerator, the tungsten granules with high-temperature flow out of the subcritical reactor and the heat is removed by the heat exchanger. One key issue of the target is to remove the 2.5 MW heat deposition safely. Another one is the heat exchange between the target and the subcritical reactor. Based on the model of effective thermal conductivity, a new thermal code is developed in Matlab. The new code is used to calculate the temperature field of the target area near active zone and it is partly verified by commercial CFD code Fluent. The result shows that the peak temperature of the target zone is nearly 740°C and the reactor and the target are proved to be uncoupled in thermal process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guan Wang ◽  
Long Gu ◽  
Di Yun

The China initiative Accelerator Driven System (CiADS) and the corresponding lead-bismuth eutectic (LBE) cooled subcritical reactor, as the research subject of one of the major national science and technology infrastructure projects, are undertaken by the Institute of Modern Physics-Chinese Academy of Sciences (IMP-CAS). And in the first phase, UO2 fuels will be loaded in the subcritical core to test the coupling technology and achieve a long-term steady operation. A brief description of CiADS subcritical reactor, fuel assembly and fuel element are presented here, and a multi-physics performance analysis and design evaluation of CiADS UO2 fuel are carried out by means of the FUTURE code. FUTURE is a fuel performance analysis code to evaluate the synergy of phenomena occurring in the fuel element and their impact on the fuel design improvement for the liquid metal fast reactor, which was developed jointly by IMP-CAS and Xi’an Jiaotong University (XJTU). In this paper, the FUTURE code was modified and updated focusing on characteristics of CiADS fuels. Relocation and densification models were added. Results of the hottest fuel element, mainly concerning the thermo-mechanical behaviors, are discussed concerning both fuel and cladding performance on the basis of indicative design limits. According to the preliminary design, the CiADS UO2 fuel exhibits good performance, and the main safety parameters are far below the indicative limits. The Fuel Cladding Mechanical Interaction (FCMI) is not very serious, and the permanent cladding strains and Cumulative Damage Fraction (CDF) are small and even negligible thanks to the low level of fuel temperature and corresponding stress. However, some critical issues may still exist, especially on LBE corrosion near the coolant inlet, where protective oxide layers are very thin from BoL to EoL. The modeling is useful for providing feedback to the conceptual design of the CiADS LBE-cooled subcritical reactor and the update of FUTURE code.


2015 ◽  
Vol 08 ◽  
pp. 55-76 ◽  
Author(s):  
Weimin Pan ◽  
Jianping Dai

An accelerator-driven system (ADS), which combines a particle accelerator with a subcritical core, is commonly regarded as a promising device for the transmutation of nuclear waste, as well as a potential scheme for thorium-based energy production. So far the predominant choice of the accelerator for ADS is a superconducting linear accelerator (linac). This article gives a brief overview of ADS based on linacs, including the motivation, principle, challenges and research activities around the world. The status and future plan of the Chinease ADS (C-ADS) project will be highlighted and discussed in depth as an example.


Sign in / Sign up

Export Citation Format

Share Document