Hydrogenolysis of glucose and fructose in glycol solutions over CuO-MgO-ZrO2 catalyst

2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.

1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450035
Author(s):  
Lihui Yin ◽  
Xuebo Zhang ◽  
Xiaodong Li ◽  
Shaohong Jin

Samples of preparations contaminated by diethylene glycol (DEG), diethylene glycol raw materials and laboratory prepared solutions were measured to get NIR spectra. Then the identification models were developed using the collected spectra and the spectra of distilled water, propylene glycol and the preparations without diethylene glycol. Besides, the quantification model was also established for determining the concentration of diethylene glycol in the preparations. Validation results show the identification and quantification models have ideal prediction performance. The emergency NIR models are rapid, easy to use and accurate, and can be implemented for identifying diethylene glycol raw material, screening the preparations contaminated by diethylene glycol in the markets and analyzing the concentrations of DEG.


2020 ◽  
Vol 164 ◽  
pp. 08031
Author(s):  
Evgeniy Velichko ◽  
Edward Tshovrebov ◽  
Ural Niyazgulov

The article deals with issues of monitoring, planning, organizational and technical support, economic regulation and improving the efficiency of the infrastructure for processing, recycling and disposal of waste, resource conservation and management of secondary resources, their use as secondary raw materials for production, services, work and power generation. The Russian Federation has significant potential for economic growth due to the efficient use of secondary resources from billions of tons of generated production and consumption waste annually. These ecologically unsafe anthropogenic objects can be characterized as a source of valuable renewable raw materials, material and fuel and energy resources. However, the scale and level of use of various types of secondary resources are characterized by considerable unevenness and depend on the demand for secondary raw materials, the resource value of the waste, the environmental situation arising from treating them as environmental polluters, on the real economic conditions that determine the profitability of each specific type. economic activities that use secondary resources for the manufacture of products, works, services, energy production. The methods of monitoring the industry for the treatment, disposal and disposal of waste are: information-analytical, information-statistical, sociological, geo-information. The legal status of the monitoring system of the industry for the treatment, disposal and disposal of waste is determined by the limitations of its functionality within the framework of the goals and objectives facing it.


1952 ◽  
Vol 24 (6) ◽  
pp. 1053-1055 ◽  
Author(s):  
W. A. Cannon ◽  
L. C. Jackson

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Darfizzi Derawi ◽  
Bashar Mudhaffar Abdullah ◽  
Hasniza Zaman Huri ◽  
Rahimi M. Yusop ◽  
Jumat Salimon ◽  
...  

Palm olein (POo) is widely produced as edible oil in tropical countries. POois considered as renewable raw material for the new industrial and pharmaceutical products synthesis based on its characterization. Palm olein was good on its viscosity index, oxidative stability, and flash and fire point. POocontained unsaturated triacylglycerols (TAGs): POO (33.3%); POP (29.6%) which plays an important role in chemical modification process to produce new industrial products. The double bond was detected on1H-NMR (5.3 ppm) and13C-NMR (130 ppm) spectra. The chemical compositions of POowere tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. This unsaturated oil is potentially to be used as renewable raw materials in chemical modification process to synthesise polyols, polyurethane, and biolubricant for industrial and pharmaceutical products application.


2021 ◽  
pp. 92-97
Author(s):  
M.E. Sharanda ◽  
◽  
A.M. Mylin ◽  
O.Yu. Zinchenko ◽  
V.V. Brei ◽  
...  

The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.


2018 ◽  
Vol 220 ◽  
pp. 251-263 ◽  
Author(s):  
Hailong Liu ◽  
Zhiwei Huang ◽  
Haixiao Kang ◽  
Xuemei Li ◽  
Chungu Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document