Three-dimensional Time-dependent Numerical Analysis of SF6 Arc Plasma under Externally Applied Magnetic Field

2011 ◽  
Vol 131 (10) ◽  
pp. 865-871 ◽  
Author(s):  
Satoshi Hirayama ◽  
Takayasu Fujino ◽  
Motoo Ishikawa ◽  
Tadashi Mori ◽  
Katsuharu Iwamoto ◽  
...  
Author(s):  
G. Tomita ◽  
M. Kaneda ◽  
T. Tagawa ◽  
H. Ozoe

Three-dimensional numerical computations were carried out for the natural convection of air in a horizontal cylindrical enclosure in a magnetic field, which is modeled for a bore space of a horizontal superconducting magnet. The enclosure was cooled from the circumferential sidewall at the constant heat flux and vertical end walls were thermally insulated. A strong magnetic field was considered by a one-turn electric coil with the concentric and twice diameter of the cylinder. Without a magnetic field, natural convection occurs along the circumferential sidewall. When a magnetic field was applied, magnetizing force induced the additional convection, that is, the cooled air at the circumferential wall was attracted to the location of a coil. Consequently, the temperature around the coil decreased extensively.


2006 ◽  
Vol 508 ◽  
pp. 199-204 ◽  
Author(s):  
Marc Hainke ◽  
Sonja Steinbach ◽  
Johannes Dagner ◽  
Lorenz Ratke ◽  
Georg Müller

The solidification microstructure is the consequence of a wide range of process parameters, like the growth velocity, the temperature gradient and the composition. Although the influence of these parameters is nowadays considerably well understood, an overall theory of the influence of convection on microstructural features is still lacking. The application of time dependent magnetic fields during directional solidification offers the possibility to create defined solidification and flow conditions. In this work, we report about solidification experiments in the ARTEMIS and ARTEX facilities including rotating magnetic fields (RMF). The effect of the forced melt flow on microstructural parameters like the primary and secondary dendrite arm spacing is analyzed for a wide range of magnetic field parameters. The experimental analysis is supported by a rigorous application of numerical modeling. An important issue is hereby the prediction of the resulting macrosegregation, i.e., differences in the composition on the scale of the sample (macroscale) due to the RMF. For the considered configuration and parameters an axial enrichment of Si is found beyond a certain magnetic field strength. The results are compared to available theories and their applicability is discussed.


2016 ◽  
Vol 11 (4) ◽  
pp. JFST0024-JFST0024
Author(s):  
Hiroki SAITO ◽  
Yusuke NAKANE ◽  
Takayasu FUJINO ◽  
Hidemasa TAKANA

1997 ◽  
Vol 333 ◽  
pp. 57-83 ◽  
Author(s):  
HAMDA BEN HADID ◽  
DANIEL HENRY

The effects of a constant magnetic field on electrically conducting liquid-metal flows in a parallelepiped cavity are investigated using a spectral numerical method involving direct numerical solution of the Navier–Stokes and Ohm equations for three-dimensional flows. Three horizontal Bridgman configurations are studied: buoyancy-driven convection in a confined cavity and in a cavity where the top boundary is a stress-free surface and thirdly, thermocapillary-driven flow in a cavity where the upper boundary is subjected to effects of surface tension. The results of varying the Hartmann number (Ha) are described for a cavity with Ax = L/H = 4 and Ay = W/H = 1, where L is the length, W is the width and H is the height of the cavity. In general, an increase in the strength of the applied magnetic field leads to several fundamental changes in the properties of thermal convection. The convective circulation progressively loses its intensity and when Ha reaches a certain critical value, which is found to depend on the direction (longitudinal or vertical) of the applied magnetic field, decrease of the flow intensity takes on an asymptotic form with important changes in the structure of the flow circulation. The flow structure may be separated into three regions: the core flow, Hartmann layers which develop in the immediate vicinity of the rigid horizontal boundaries or at the endwalls, and parallel layers appearing in the vicinity of the sidewalls. The behaviour of the maxima of velocity and of the overall flow circulation is found to depend on both the boundary conditions used and the direction of the applied magnetic field. Furthermore, the interaction of the electric current density with the applied magnetic field which leads to the structural reorganization described above can also create more subtle flow modifications, such as flow inversions which are observed mainly in the central region of the cavity.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2767-2772
Author(s):  
Matteo Salvato ◽  
Carmine Attanasio ◽  
Gerardina Carbone ◽  
Rosalba Fittipaldi ◽  
Tiziana Di Luccio ◽  
...  

Resistivity measurements in external applied magnetic field up to 8.5T have been performed on Bi2Sr2CuO6+δ/CaCuO2 superconducting superlattices obtained by MBE. The magnetic field (H) vs. temperature (T) phase diagrams have been determined and the experimental data have been compared with that obtained in the case of Bi2Sr2CuO6+δ thin films deposited with the same technique. A reduction of the anisotropy has been obtained in the case of the superlattices with respect to the case of Bi2Sr2CuO6+δ thin films and a three dimensional behavior has been observed by paraconductivity measurements.


Sign in / Sign up

Export Citation Format

Share Document