superconducting magnet
Recently Published Documents


TOTAL DOCUMENTS

1858
(FIVE YEARS 155)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Xiangchen Yang ◽  
Fusan Chen ◽  
Xianjing Sun ◽  
Xiaojuan Bian ◽  
Wan Chen ◽  
...  

Author(s):  
Zhenchuang Zhang ◽  
Dongsheng Yang ◽  
Hai-Shan Zhou ◽  
Jinggang Qin ◽  
Guang-Nan Luo

Abstract In magnetic confinement fusion reactors, superconducting magnet systems are essential for generating and controlling high magnetic fields. To increase the magnetic field, new superconducting materials such as Bi2212 (Bi2Sr2CaCu2O8+x) have been selected in the design of magnet systems. However, the stability of the Bi2212 superconductor under magnetic fields must be studied for the routine and safe operation of magnet systems. In this work, the stability and degradation mechanism of a Bi2212 cable under magnetic fields were investigated. With a magnetic field of 5.8 T, the cable carrying 29 kA was exerted with a force of ~168.2 kN per meter. In the core area of the cable, moved wires were detected by computed tomography (CT). The macroscopic movement of the wires would vary with the axial position, which could be related to the twist structure. Then, the cable was decomposed, and the acquired wires were tested under 12 T at 4.2 K by four-probe method. The results indicated that the inner wires had relatively lower critical currents, which should be the reason for the degradation of cable performance. Scanning electron microscope (SEM) images of the superconducting phase within the wires confirmed that cracks existed in the superconducting phase of the inner wires, while intact crystals were found in that of the outer wires. The variation in microstructures gave rise to changes in the wire performance.


Author(s):  
Xinbo Hu ◽  
Anatolii A Polyanskii ◽  
Dmytro Abraimov ◽  
Andrey V. Gavrilin ◽  
Hubertus W Weijers ◽  
...  

Abstract Industrial production of REBa2Cu3O7-δ (REBCO) coated conductors made it possible to construct the 32 T magnet, the first successful all-superconducting user magnet to exceed 30 T, which now serves users as SCM4 (Superconducting Magnet) at the NHMFL. Here we present an analysis of the damage that occurred in late-stage proof testing of the 32 T prototype coil after many essential facets of the design had been proven through more than 100 intentionally triggered quenches at fields up to 24 T. This prototype coil was then subjected to accelerated charge-discharge cycles at a rate 44 times faster than its design ramp rate to attempt to address its fatigue tolerance. The extra hysteresis loss of the fast ramps led to heating of the end pancakes which induced, after 55 fatigue cycles, 3 spontaneous quenches at progressively lower currents. Recognizing that the coil was damaged, the pancakes were then unwound and their REBCO tapes run through our continuous in-field transport Ic and remnant-field magnetization monitoring device, YateStar, which revealed 3 highly localized zones of low Ic in the end pancake that induced quench. Careful examination of these zones, especially the most intensely damaged one, revealed that the worst hot spot reached at least 779C during the quenches. Magneto-optical imaging showed that this damaged zone was about 5 mm in diameter and indeed the perpendicular damage length induced in neighboring turns by this localized quench heating was almost as great. Although there is much present concern about fatigue crack propagation from edge defects, we actually attribute this damage not to fatigue but to fluctuations in vortex pinning density due to imperfect BaZrO3 (BZO) nanorod growth that locally reduced the critical current Ic. These localized low-Ic regions then had to shed their excess current into the copper stabilizer, producing intense heating. We provide transmission and scanning electron microscopy evidence for local fluctuations of the BZO pinning structure and relate it to recent work that shows significant variations of 4 K, high field Ic values due to apparent production fluctuations of the growth conditions of the Zr-doped Metal-Organic Chemical Vapor Deposition (MOCVD) REBCO used for this test magnet.


Author(s):  
Thibault Lécrevisse ◽  
Xavier Chaud ◽  
Philippe Fazilleau ◽  
Clément Genot ◽  
Jung-bin Song

Abstract In this article, we summarize what we have learned about Metal-as-Insulation (MI) winding behavior and technical challenges. Bailey et al. first proposed the use of Metallic Insulation (MI) for superconducting magnet in 1988 through a U.S. patent. High Temperature Superconductor (HTS) materials are highly thermally stable. This feature compared to classical Low Temperature Superconductor (LTS) enables the use of MI technology to improve the protection against quenches. Gupta was the first to propose the use of a metallic tape in an HTS winding to avoid too much radial currents in No Insulation (NI) in 2011. Hahn et al. presented preliminary results on a pancake sample the same year. We are proposing here to come back on the work done for about 10 years by research groups worldwide and will focus on the turn-to-turn contact resistivity Rct parameter. We will also give details of our LNCMI-CEA-Néel Institute MI HTS insert built in 2018 in the framework of the French National Research Agency (ANR) funding through the NOUGAT project. We tested this magnet many times between 2018 and 2021 and learnt a lot on this technology. This magnet is the first REBCO solenoid of this size using this technology and tested intensively at such high magnetic field (up to 32.5 T) so far. In this magnet, we firstly include a magnetic shielding technology consisting of REBCO NI turns inside the overbanding of each pancake. We give some details and effect of such technology inside an HTS MI insert in case of a fast discharge, a quench or an outsert failure. Finally, we discuss about the self-protection feature of MI coils and we propose a passive protection way for high Rct values.


2022 ◽  
Author(s):  
Gregory Denisov ◽  
Andrey Kuftin ◽  
Vladimir Manuilov ◽  
Alexey Chirkov ◽  
Leonid Popov ◽  
...  

Abstract The specific features of the main components of the new powerful 230GHz/80kV/40A gyrotron aimed to use in the future control fusion facility DEMO are described. The gyrotron design provides a stable output power generation of more than 1 MW using a superconducting magnet with a moderate size warm bore. Furthermore, the new original quasi-optical converter providing the gyrotron operation in three possible regimes  two free oscillation regimes with co-rotating TE33,13 or counter-rotating TE33,-13 mode, and the regime with frequency locking by the stable input signal  is suggested and optimized. The Gaussian content in the output wave-beam in all above-mentioned regimes is about 98%.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chao Song ◽  
Biao Yu ◽  
Junjun Wang ◽  
Xinmiao Ji ◽  
Lei Zhang ◽  
...  

Metastasis is the leading cause of cancer patient death, which is closely correlated with reactive oxygen species (ROS) levels. It is well known that the effects of ROS on tumors are diverse, depending on ROS concentration and cell type. We found that ovarian cancer cells have significantly lower levels of ROS than normal ovarian cells. Moreover, increased ROS levels in ovarian cancer cells can substantially inhibit their migration and invasion ability. Furthermore, the results show that moderate static magnetic field (SMF) can inhibit ovarian cancer cell migration, invasion, and stemness in a ROS-dependent manner. RNA sequencing results confirm that SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells. Consistently, the expressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc). Furthermore, moderate SMFs provided by a superconducting magnet and permanent magnet have good biosafety and can both inhibit ovarian cancer metastasis in mice. Therefore, our study demonstrates the effects of SMFs on oxidative stress and metastasis in the ovarian cancer cells, which reveals the potential of applying SMF as a physical method in cancer therapy in the future.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7972
Author(s):  
Anna Kraszewska ◽  
Janusz Donizak

Transition to turbulence and changes in the fluid flow structure are subjects of continuous analysis and research, especially for unique fields of research such as the thermo-magnetic convection of weakly magnetic fluids. Therefore, an experimental and numerical research of the influence of an external magnetic field on a natural convection’s fluid flow was conducted in the presented research. The experimental part was performed for an enclosure with a 0.5 aspect ratio, which was filled with a paramagnetic fluid and placed in a superconducting magnet in a position granting the enhancement of the flow. The process was recorded as temperature signals from the thermocouples placed in the analyzed fluid. The numerical research enabled an investigation based not only on temperature, but velocities as well. Experimental and numerical data were analyzed with the application of extended fast Fourier transform and wavelet analysis. The obtained results allowed the determination of changes in the nature of the flow and visualization of the influence of an imposed strong magnetic field on a magnetic fluid. It is proved that an applied magnetic field actuates the flow in Rayleigh-Benard convection and causes the change from laminar to turbulent flow for fairly low magnetic field inductions (2T and 3T for ΔT = 5 and 11 °C respectively). Fast Fourier transform allowed the definition of characteristic frequencies for oscillatory states in the flow, as well as an observation that the high values of magnetic field elongate the inertial range of the flow on the power spectrum density. Temperature maps obtained during numerical simulations granted visualizations of thermal plume formation and behavior with increasing magnetic field.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ying Zheng ◽  
Jinxing Zheng ◽  
Xudong Wang

High-temperature superconducting material is a promising candidate to fabricate superconducting magnet for magnetic confinement fusion reactors. The DPA number of the 1 µm thick superconducting layer in a high temperature superconducting tape under neutron irradiation needs to be calculated to predict the property changes. The DPA cross sections, which ignore the spatial distribution of vacancies caused by PKAs, are commonly used to obtain the results of the damage energy and DPA. However, for geometric models with the thickness as small as 1 µm, the energy and angular distribution of PKAs reveal that a significant number of PKAs with relatively high energy tend to scatter forward and cross the boundary of model, so the thickness of model has the potential to affect the number of displaced atoms. In this paper, we developed a method based on Geant4 and SRIM to evaluate the deviation of the traditional analytic method caused by the thickness. Geant4 is used to obtain the location, direction, and energy of PKAs, while SRIM is used to track every PKA and obtain damage energy and the number of displaced atoms. The radiation damage calculation of simple thin plate models with different thicknesses and the tape model are conducted with the neutron energies from 1 to 14 MeV. The results show that PKAs need to be tracked continuously for models with thickness less than 10 µm and the deviation of the analytic formulas increases rapidly with the decrease of thickness. For the superconducting layer composed of four different elements in the tape, the deviation also depends on the proportion of each atomic species and the neutron-atom interaction cross sections under different incident neutron energy.


Author(s):  
Yaohui Wang ◽  
Qiuliang Wang ◽  
Hui Wang ◽  
Shunzhong Chen ◽  
Xinning Hu ◽  
...  

Abstract Active shielding technology has been widely applied to the superconducting magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) magnets design, revealing excellent performance on the stray field control. For such a highly homogeneous field superconducting magnet design, an appropriate optimization strategy is essential to guarantee the magnetic field homogeneity in the central region and the expected 5 Gauss line range, especially for the ultrahigh field superconducting magnet. Based on the compensating field optimization method, an actively-shielded whole-body 14T MRI magnet and an actively-shielded 1.3GHz NMR magnet were presented, and detailed analyses were conducted to evaluate the feasibility of the designs. The developed magnet design method, coil pattern, wire arrangement, and stress/strain adjustment will be used to guide the corresponding project implementation.


Sign in / Sign up

Export Citation Format

Share Document