scholarly journals Time Resolution Measurements on SiPM for High Energy Physics Experiments

Author(s):  
L.M. Montano ◽  
M. Fontaine

Scintillator detector have been used in a wide range of experiments in different areas: Nuclear and High Energy Physics, Medicine, and Radiation Security among others. It is common to use scintillator counters coupled to Photomultiplier Tubes (PMT) as a read out detectors. Nowadays, there has been a great interest in using the Silicon Photomultipliers (PMSi) as a replacement for PMT's due to their high photon detection efficiency (PDE) and their high single photon time resolution (SPTR). The fast the signal is detected, the whole detection system will be useful to search for new physics. PMSi is also known to have a good compactness, magnetic field resistance and low cost. In our lab we are measuring the time resolution of two different models of PMS in order to build a fast radiation detector system.

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 591-596 ◽  
Author(s):  
Aneta Malinowska ◽  
Marian Jaskóła ◽  
Andrzej Korman ◽  
Adam Szydłowski ◽  
Karol Malinowski ◽  
...  

Abstract To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.


2012 ◽  
Vol 1 (2) ◽  
pp. 235-238 ◽  
Author(s):  
C. Thomay ◽  
P. Baesso ◽  
D. Cussans ◽  
J. Davies ◽  
P. Glaysher ◽  
...  

Abstract. Resistive plate chambers (RPCs) are widely used in high energy physics for both tracking and triggering purposes, due to their excellent time resolution, rate capability, and good spatial resolution. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a muon scattering tomography (MST) prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ∼ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. The required spatial granularity is achieved by using 330 readout strips per RPC with 1.5 mm pitch. The RPCs have shown an efficiency above 99% and an estimated intrinsic resolution below 1.1 mm. Due to these qualities, RPCs serve as excellent candidates for usage in volcano radiography.


1998 ◽  
Vol 13 (40) ◽  
pp. 3235-3249 ◽  
Author(s):  
S. I. BITYUKOV ◽  
N. V. KRASNIKOV

We propose a method to estimate the probability of new physics discovery in future high energy physics experiments. Physics simulation gives both the average numbers <Nb> of background and <Ns> of signal events. We find that the proper definition of the significance for <Nb>, <Ns> ≫ 1 is [Formula: see text] in comparison with often used significances: [Formula: see text] and [Formula: see text]. We propose a method of taking into account the systematical errors related to nonexact knowledge of background and signal cross-sections. An account of such systematics is essential in the search for supersymmetry at LHC. We also propose a method for estimating exclusion limits on new physics in future experiments.


2022 ◽  
Vol 17 (01) ◽  
pp. C01001
Author(s):  
F. Ahmadov ◽  
G. Ahmadov ◽  
R. Akbarov ◽  
A. Aktag ◽  
E. Budak ◽  
...  

Abstract In the presented work, the parameters of a new MAPD-3NM-II photodiode with buried pixel structure manufactured in cooperation with Zecotek Company are investigated. The photon detection efficiency, gain, capacitance and gamma-ray detection performance of photodiodes are studied. The SPECTRIG MAPD is used to measure the parameters of the MAPD-3NM-II and scintillation detector based on it. The obtained results show that the newly developed MAPD-3NM-II photodiode outperforms its counterparts in most parameters and it can be successfully applied in space application, medicine, high-energy physics and security.


2016 ◽  
Vol 31 (33) ◽  
pp. 1644003 ◽  
Author(s):  
Matthew Reece

I give an overview of the physics potential at possible future [Formula: see text] colliders, including the ILC, FCC-ee, and CEPC. The goal is to explain some of the measurements that can be done in the context of electroweak precision tests and Higgs couplings, to compare some of the options under consideration, and to put the measurements in context by summarizing their implications for some new physics scenarios. This is a writeup of a plenary talk at the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study Program on High Energy Physics Conference, 18–21 January 2016. Some previously unpublished electroweak precision results for FCC-ee and CEPC are included.


2019 ◽  
Author(s):  
Bin Pei ◽  
Biao Chen ◽  
Hao Su ◽  
Wenhuan Huang ◽  
Hui Miao ◽  
...  

<p>Detection of g-rays is of vital significance in various areas such as high-energy physics, nuclear medicine, national security and space exploration. However, most current spectrometry methods are typically based on ionization effects which are limited to electron counting techniques. Herein, we report an alternative, quantifiable g-ray chemosensor from a g-ray-induced proton generation process more sensitive to poly (methyl methacrylate) (PMMA) and polyvinyl chloride (PVC) by surveying a series of commercially available polymers. Accordingly, a pH-sensitive yet g-ray-stable fluorophore is designed, resulting in dramatic fluorescence shift from the blue (<i>l</i><sub>em</sub> = 460~480 nm) to the red region (<i>l</i><sub>em</sub> = 570~620 nm) after subjecting it to g-irradiation in PMMA or PVC films. A linear response of ratiometric fluorescence intensity (I<sub>red</sub>/I<sub>blue</sub>) to g-ray dosage in a wide range (80-4060 Gy) was established, which can be used as a visual dosimeter. Meanwhile, the discovery also opens new doors for proton-based radiation detection and chemistry. </p>


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Andy Buckley ◽  
Jonathan Butterworth ◽  
Louie Corpe ◽  
Martin Habedank ◽  
Danping Huang ◽  
...  

Measurements at particle collider experiments, even if primarily aimed at understanding Standard Model processes, can have a high degree of model independence, and implicitly contain information about potential contributions from physics beyond the Standard Model. The CONTUR package allows users to benefit from the hundreds of measurements preserved in the RIVET library to test new models against the bank of LHC measurements to date. This method has proven to be very effective in several recent publications from the CONTUR team, but ultimately, for this approach to be successful, the authors believe that the CONTUR tool needs to be accessible to the wider high energy physics community. As such, this manual accompanies the first user-facing version: CONTUR v2. It describes the design choices that have been made, as well as detailing pitfalls and common issues to avoid. The authors hope that with the help of this documentation, external groups will be able to run their own CONTUR studies, for example when proposing a new model, or pitching a new search.


2017 ◽  
Vol 32 (09) ◽  
pp. 1741017
Author(s):  
Hirotaka Sugawara

At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, [Formula: see text] (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.


Sign in / Sign up

Export Citation Format

Share Document