Dependence of the Dynamic Behavior of Supersaturated Silicic Acid on the Surface Area of the Solid Phase

Author(s):  
Yuichi Niibori ◽  
Yasunori Kasuga ◽  
Hiroshi Kokubun ◽  
Kazuki Iijima ◽  
Hitoshi Mimura
2002 ◽  
Vol 757 ◽  
Author(s):  
Taiji Chida ◽  
Yuichi Niibori ◽  
Osamu Tochiyama ◽  
Koichi Tanaka

ABSTRACTSince silica undergoes polymerization, precipitation, and dissolution depending on the change in pH or temperature, the chemical behavior of silica would be much complicated when cement for the construction of geological disposal system greatly changes the pH (8 to 13) of groundwater. To clarify the dynamic behavior of silica in such an alkaline solution, the concentrations of silica in both soluble and colloidal form in the supersaturated solution in the presence of solid phase have been traced over a 40-day period. In the experiment, the concentration of silica in a soluble form was determined by the silicomolybdenum-yellow method, and the concentration of silica in soluble plus colloidal forms was determined by adjusting the pH of the solution to 13, where all the silica changes into a soluble form (mainly monomeric). In order to examine the dynamic behavior of colloidal silica with solid phase of silica, this study has used natural quartz and pure commercial amorphous silica, both in a size fraction of 74–149 μm, whose specific surface-area (BET, N2 gas) were respectively 1.0 m2/g and 400 m2/g. The Na2SiO3 solution (250 ml, pH>10, 298 K) was poured into a polyethylene vessel containing quartz or amorphous silica (0.1 g or 0.5 g), HNO3 and a buffer solution. The pH of the solution was set to 8. The silica initially in a soluble form at pH>10 (6.8×10-3 M or 1.2×10-2 M) became supersaturated and either deposited on the solid surface or changed into the colloidal form. The ratio of silica in those form depended both on the initial concentration of soluble-silica and the surface area of the solid. The concentration of colloidal-silica gradually decreased, where the logarithm of its concentration decreased linearly against time after the concentration of soluble-silica decreased to a metastable concentration slightly higher than the solubility of soluble-silica.


1981 ◽  
Vol 46 (11) ◽  
pp. 2640-2649 ◽  
Author(s):  
Otakar Söhnel

Porosity of the filtration cake, formed at filtration of model suspensions of CaCO3, BaCrO4 and ZnO is not a function of suspension concentration as long as the solid phase forming the suspension is of the same granulometric composition. The calculated surface area of the solid phase, effective as concerns filtration at ΔP = 30 kPa, is smaller than the actual surface area determined by absorption of nitrogen. Porosity of the filtration cake formed at filtration of suspensions of Mg(OH)2, CaCO3, SrCO3 and BaCO3 prepared by precipitation is a linear function of the initial concentration of precipitated solutions since it is affected by the size and polydispersity of originating particles in dependence on concentration of precipitated solutions. The cakes formed at filtration of precipitated suspensions of CaCO3, SrCO3 and BaCO3 aged for up to 2 hours from the instant of their preparation have a constant porosity which is independent of the time of suspension aging.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2019
Author(s):  
Maria A. Morosanova ◽  
Ksenia V. Chaikun ◽  
Elena I. Morosanova

In order to design a sensor material for total antioxidant capacity determination we have prepared silica and silica–titania xerogels doped with iron(III) and modified with 1,10-phenanthroline. Titanium(IV) tetraethoxyde content in the precursors (titanium(IV) tetraethoxyde and tetraethyl orthosilicate) mixtures has been varied from 0 to 12.5% vol. Iron(III) concentrations in sol has been varied from 1 to 100 mM. The increase of titanium(IV) content has led to a decrease in BET surface area and average pore diameter and an increase of micropore surface area and volume, which has resulted in better iron(III) retention in the xerogels. Iron(III), immobilized in the xerogel matrix, retains its ability to form complexes with 1,10-phenanthroline and to be reduced to iron(II). Static capacities for 1,10-phenanthroline have been determined for all the iron(III) doped xerogels (0.207 mmol/g–0.239 mmol/g) and they are not dependent on the iron(III) content. Sensor materials—xerogels doped with iron(III) and modified with 1,10-phenanthroline—have been used for antioxidants (catechol, gallic and ascorbic acids, and sulphite) solid phase spectrophotometric determination. Limits of detection for catechol, gallic and ascorbic acids, and sulphite equal 7.8 × 10−6 M, 5.4 × 10−6 M, 1.2 × 10−5 M, and 3.1 × 10−4 M, respectively. The increase of titanium(IV) content in sensor material has led to an increase of the reaction rate and the sensitivity of determination. Proposed sensor materials have been applied for total antioxidant capacity (in gallic acid equivalents) determination in soft beverages, have demonstrated high stability, and can be stored up to 6 months at room temperature.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


2013 ◽  
Author(s):  
George J. Nelson

Analytical models developed to investigate charge transfer in Li-ion battery cathodes reveal distinct transport regimes where performance may be limited by either microstructural surface characteristics or solid phase geometry. For several cathode materials, particularly those employing conductive additives, surface characteristics are expected to drive these performance limitations. For such electrodes gains in performance may be achieved by modifying surface geometry to increase surface area. However, added surface area may present a diminishing return if complex structures restrict access to electrochemically active interfaces. A series of parametric studies has been performed to better ascertain the merits of complex, tailored surfaces in Li-ion battery cathodes. The interaction between lithium transport and surface geometry is explored using a finite element model in which complex surfaces are simulated with fractal structures. Analysis of transport in these controlled structures permits assessment of scaling behavior related to surface complexity and provides insight into trade-offs in tailoring particle surface geometry.


2017 ◽  
Vol 64 (3-4) ◽  
pp. 155-162
Author(s):  
Aleksandra Gorączko ◽  
Andrzej Olchawa

AbstractThe paper presents results of a study on the amount of water associated with the solid phase of the clay water system at the plastic limit. Two model monomineral clays, namely kaolinite, and montmorillonite, were used in the study. The latter was obtained by gravitational sedimentation of Na-bentonite (Wyoming).The calculated mean number of water molecule layers on the external surface of montmorillonite was 14.4, and water in interlayer spaces constituted 0.3 of the water mass at the plastic limit.The number of water layers on the external surface of kaolinite particles was 63, which was related to the higher density of the surface electrical charge of kaolinite compared to that of montmorillonite.The calculations were made on the basis of the external surface area of clays and the basal spacing at the plastic limit measured by an X-ray diffraction test. The external surface area of clays was estimated by measuring sorption at a relative humidity p/p0 = 0.5.


2014 ◽  
Vol 1035 ◽  
pp. 445-452
Author(s):  
Jian Wang ◽  
Bao Gui Wang ◽  
Gang Tao

For understanding the dynamic behavior of open and closed foam subject to a shock wave, this paper through experiments, to gain a deeper understanding of the incidence, reflection and transmission of a shock wave when it interacted with cellular foam. Moreover, by analyzing the loss of the peak overpressure and positive impulse, we were able to respectively know the positive impulse of the incidence, reflection and transmission shock wave. The experimental results indicated that the attenuation capability for foam to the shock wave was caused by the internal friction and deformation of solid phase, which would absorb the energy of the shock wave. From the results we gain an understanding that the mechanical phenomenon of open foam to shock wave are not fully consistent with those of closed foam , while the attenuation of open foam to shock wave is more effective than that of closed foam.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 20
Author(s):  
Andrea Milani ◽  
Paolo Lucci ◽  
Martina Sedran ◽  
Erica Moret ◽  
Sabrina Moret ◽  
...  

The evaluation of the content of waxes is request both by IOC Trade Standard and by Regulation (EEC) 2568/91 and its further amendments. The official method uses 15 g of silicic acid and elutes several fractions by using huge volumes of dangerous solvent (n-hexane). The developed method uses 1 g of silicic acid with a different particle size and less than 20 mL of solvent mixture, substituting n-hexane with less toxic isooctane. Briefly, after spiking with a suitable internal standard, oil sample is fractionated by SPE (Solid Phase Extraction) cartridge with 1 g of silica, waxes are eluted with 14 mL of isooctane/ethyl ether 99/1 (6 mL discarded and 8 mL collected), then, after elution sample is reconstitute in 200 μL of n-heptane and analysed by capillary GC. Data of “In home” validation, (repeatability, accuracy and recovery) and relative chromatograms are reported in this paper.


1983 ◽  
Vol 105 (1) ◽  
pp. 29-38 ◽  
Author(s):  
A. Mukherjee

The dynamic behavior of rigid rotors as affected by the use of liquid-solid biphase lubricants in the supporting hydrodynamic bearings is studied theoretically. Two categories of dynamic behavior viz (a) unbalance response at low rotor speeds, and (b) half frequency whirl at high speeds, are studied. It is shown that the use of liquid-solid biphase lubricants causes considerable reduction in the size of journal orbit of an unbalanced rotor. The influence of particle size and dispersion concentration is studied. It is observed that an early reversal of journal surface velocity in the trailing half of crushing zone reduces the efficacy of the crushing action of the solid phase to some extent and results in periodic pulses applied by the solid phase on the journal. At higher journal speeds at which the operating point of the journal becomes unstable and the phenomenon of half-frequency whirl sets in, the use of biphase lubricants with small and medium-size particles causes a reduction in the size of whirl orbits. The journal, however, keeps whirling in a manner such that the whirl ratio crosses the value of + 1/2 twice in an orbit and thus the bearing loses its rotational load bearing capacity twice in an orbit. The use of large particles with heavy or medium weight rotors results in a significant qualitative change in the nature of whirl orbit. The journal center in such cases does not encircle the bearing center and the whirl ratio of + 1/2 is never reached. The liquid phase retains rotational load bearing capacity and shares the major part of rotor weight throughout.


2010 ◽  
Vol 8 (4) ◽  
pp. 750-757
Author(s):  
Waldemar Tomaszewski ◽  
Vladimir Gun’ko ◽  
Roman Leboda ◽  
Jadwiga Skubiszewska-Zięba

AbstractSolid phase extraction (SPE) of methoxy- and methylenedioxyamphetamines from diluted aqueous solutions was investigated on carbon and polymeric adsorbents of different textures and chemical compositions. Those adsorbents were applied cartridges packed with three chemically modified carbons prepared from plum stones (initial A2PS, oxidized A2PS-O, and reduced A2PS-H) and commercially available adsorbents (polymeric LiChrolut EN, graphitized Hypercarb and Carboprep). Several factors influence the recovery rates of amphetamine derivatives such as the polarity of adsorbates (free energy of salvation), the specific surface area and surface composition of adsorbents, and the solvent characteristics. Different combinations of these factors affect the recovery rate (R1) for high- and low-surface area adsorbents. The minimal R1 values are observed for an amphetamine derivative at a maximal solvation effect and for a set of amphetamines adsorbed on graphitized carbons.


Sign in / Sign up

Export Citation Format

Share Document