colloidal silica
Recently Published Documents


TOTAL DOCUMENTS

1348
(FIVE YEARS 157)

H-INDEX

70
(FIVE YEARS 7)

2022 ◽  
Vol 607 ◽  
pp. 698-710
Author(s):  
Thomas Meincke ◽  
Johannes Walter ◽  
Lukas Pflug ◽  
Thaseem Thajudeen ◽  
Andreas Völkl ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 547
Author(s):  
Charlotte Dewitte ◽  
Alexandra Bertron ◽  
Mejdi Neji ◽  
Laurie Lacarrière ◽  
Alexandre Dauzères

Concretes can be exposed to a magnesium attack in several environments leading to the formation of magnesium silicate hydrates (M-S-H) and brucite (MH). The formation of M-S-H is likely to alter the properties of the cement matrix because it is linked to the decalcification of C-S-H. However, relatively few data on M-S-H exist in the literature. In order to characterize, physically and mechanically, the M-S-H phase, pure M-S-H cohesive pastes are needed. This work studies the formation of cohesive M-S-H pastes made with MgO-to-SiO2 atomic ratios of 0.78, 1 and 1.3, from two types of silica (silica fume or colloidal silica) and under 20 °C and 50 °C thermal curing. X-ray diffraction and thermogravimetric analyses confirmed that the consumption of brucite and the formation of M-S-H were quicker with a 50 °C curing. Energy-dispersive X-ray spectroscopy and microtomography showed that colloidal silica enabled a better distribution of the particles than silica fume. Microstructural characterizations were conducted under the protocol with colloidal silica and 50 °C thermal curing. Porosity investigations allowed to describe the M-S-H pastes as highly porous materials with a low content of micropores in comparison with mesopores. The type of mixing influenced the mesopore size distribution.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 428
Author(s):  
Kyong Ku Yun ◽  
Jong Beom Kim ◽  
Chang Seok Song ◽  
Mohammad Shakhawat Hossain ◽  
Seungyeon Han

There have been numerous studies on shotcrete based on strength and durability. However, few studies have been conducted on rheological characteristics, which are very important parameters for evaluating the pumpability and shootability of shotcrete. In those studies, silica fume has been generally used as a mineral admixture to simultaneously enhance the strength, durability, pumpability, and shootability of shotcrete. Silica fume is well-known to significantly increase the viscosity of a mixture and to prevent material sliding at the receiving surface when used in shotcrete mixtures. However, the use of silica fume in shotcrete increases the possibility of plastic shrinkage cracking owing to its very high fineness, and further, silica fume increases the cost of manufacturing the shotcrete mixture because of its cost and handling. Colloidal silica is a new material in which nano-silica is dispersed in water, and it could solve the above-mentioned problems. The purpose of this research is to develop high-performance shotcrete with appropriate levels of strength and workability as well as use colloidal silica for normal structures without a tunnel structure. Thereafter, the workability of shotcrete with colloidal silica (2, 3, and 4%) was evaluated with a particle size of 10 nm and silica fume replacement (4 and 7%) of cement. In this study, an air-entraining agent for producing high-performance shotcrete was also used. The rheological properties of fresh shotcrete mixtures were estimated using an ICAR rheometer and the measured rheological parameters such as flow resistance and torque viscosity were correlated with the workability and shootability. More appropriate results will be focusing on the Bingham model properties such that the main focus here is to compare all data using the Bingham model and its performance. The pumpability, shootability, and build-up thickness characteristics were also evaluated for the performance of the shotcrete. This research mainly focuses on the Bingham model for absolute value because it creates an exact linear line in a graphical analysis, which provides more appropriate results for measuring the shotcrete performance rather than ICAR rheometer relative data.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7520
Author(s):  
Jakub Smoleń ◽  
Piotr Olesik ◽  
Jakub Jała ◽  
Hanna Myalska-Głowacka ◽  
Marcin Godzierz ◽  
...  

In this paper, sedimentation inhibition attempts were examined using colloidal silica in a mathematical and experimental approach. Experimental results were validated by a two-step verification process. It was demonstrated that application of quantitative metallography and hardness measurements in three different regions of samples allows us to describe the sedimentation process using modified Stokes law. Moreover, proper application of Stokes law allows one to determine the optimal colloidal silica amount, considering characteristics of applied filler (alumina or graphite). The results of mathematical calculations have been confirmed experimentally—the experimental results show good agreement with the calculated data.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 460-491
Author(s):  
Giovanni Ciardi ◽  
Giovanni Vannucchi ◽  
Claudia Madiai

Colloidal silica (CS) is a kind of nanomaterial used in soil/rock grouting techniques in different branches of civil engineering. Many studies have recently been performed to investigate the potential of CS in improving the mechanical behavior of cohesionless soils and mitigating the risk of seismic liquefaction in urbanized areas. CS grout is chemically and biologically inert and, when injected into a subsoil, it can form a silica gel and stabilize the desired soil layer, thus representing an attractive, environmentally friendly alternative to standard chemical grouting techniques. This paper firstly describes the characteristics of CS grout, the gelation process and the main features of the behavior of the pure gelled material. The grout delivery mechanisms through porous media are then explained, pointing out the crucial issues for practical application of CS grouting. All the grouting-induced effects on the soil behavior, which have been investigated by laboratory tests on small-sized soil elements, are reviewed, including the modifications to soil strength and stiffness under both static and seismic loading conditions, to soil compressibility and hydraulic conductivity. Published results from physical model tests and in situ applications are also presented. Finally, some aspects related to the mechanism of soil improvement are discussed. A critical discussion of each topic is presented, drawing particular attention to the controversial or not yet fully examined aspects to which future research on colloidal silica grouting should be directed.


Author(s):  
Yue Li ◽  
chenwei wang ◽  
Jianwei Zhou ◽  
Yuanshen Cheng ◽  
晨 续 ◽  
...  

Abstract Chemical mechanical planarization (CMP) is a critical process for smoothing and polishing the surfaces of various material layers in semiconductor device fabrication. The applications of silicon dioxide films are shallow trench isolation, an inter-layer dielectric, and emerging technologies such as CMOS Image Sensor. In this study, the effect of various chemical additives on the removal rate of silicon dioxide film using colloidal silica abrasive during CMP was investigated. The polishing results show that the removal rate of silicon dioxide film first increased and then decreased with an increasing concentration of K+, pH, and abrasive size. The removal rate of silicon dioxide film increased linearly as the abrasive concentration increased. The influence mechanisms of various additives on the removal rate of silicon dioxide film were investigated by constructing simple models and scanning electron microscopy. Further, the stable performance of the slurry was achieved due to the COO- chains generated by poly(acrylamide) hydrolysis weaken the attraction between abrasives. High-quality wafer surfaces with low surface roughness were also thus achieved. The desirable and simple ingredient slurry investigated in this study can effectively enhance the planarization performance, for example, material removal rates and wafer surface roughness.


Sign in / Sign up

Export Citation Format

Share Document