Low Temperature Copper Deposition by PE-ALD

2009 ◽  
Vol 1195 ◽  
Author(s):  
Jiajun Mao ◽  
Eric Eisenbraun ◽  
Vincent Omarjee ◽  
Clement Lanslot ◽  
Christian Dussarrat

AbstractWith the continuing scaling in device sizes, sputtered copper is not expected to achieve the conformality and surface coverage requirements to be an effective seed layer for electrochemical deposition in sub-32nm features. Additionally, the metallization demands of high aspect ratio TSVs in 3D-architectures pose similar challenges. In this work, a manufacturable low temperature Cu PE-ALD process has been developed employing a novel O and F-free precursor. The ALD process conditions are correlated with key film properties, including deposition rate, composition, step coverage, and resistivity. Additionally, the influence of precursor substituents on the deposition rate and preliminary integration performance are discussed.

2006 ◽  
Vol 970 ◽  
Author(s):  
Bioh Kim

ABSTRACTConsumers are demanding smaller, lighter electronic devices with higher performance and more features. The continuous pressure to reduce size, weight, and cost, while increasing the functionality of portable products, has created innovative, cost-effective 3D packaging concepts. Among all kinds of 3D packaging techniques, through-silicon-via (TSV) electrodes can provide vertical connections that are the shortest and most plentiful with several benefits (1). Connection lengths can be as short as the thickness of a chip. High density, high aspect ratio connections are available. TSV interconnections also overcome the RC delays and reduce power consumption by bringing out-of-plane logic blocks much closer electrically.The technologies engaged with TSV chip connection include TSV formation, insulator/barrier/seed deposition, via filling, surface copper removal, wafer thinning, bonding/stacking, inspection, test, etc. Process robustness and speed of copper deposition are among the most important technologies to realize TSV chip integration. There are generally three types of via filling processes; lining along the sidewall of vias, full filling within vias, and full filling with stud formation above the via. Here, the stud works as a mini-bump for solder bonding. Two methodologies have been generally adopted for via filling process; (a) via-first approach : blind-via filling with 3-dimensional seed layer, followed by wafer thinning and (b) thinning-first approach : through-via filling with 2-dimensional seed layer at the wafer bottom after wafer thinning. Currently, the first approach is more popular than the second approach due to difficulty in handling and plating thinned wafers (2).We examined the impact of varying deposition conditions on the overall filling capability within high aspect ratio, deep, blind vias. We tested the impacts of seed layer conformality, surface wettablity, bath composition (organic and inorganic components), waveform (direct current, pulse current, and pulse reverse current), current density, flow conditions, etc. Most deposition conditions affected the filling capability and profile to some extent. We found that reducing current crowding at the via mouth and mass transfer limitation at the via bottom is critical in achieving a super-conformal filling profile. This condition can be only achieved with a proper combination of aforementioned process conditions. With optimized conditions, we can repeatedly achieve void-free, bottom-up filling with various via sizes (5-40μm in width and 25-150μm in depth).


1998 ◽  
Vol 514 ◽  
Author(s):  
V. M. Dubin ◽  
S. Lopatin ◽  
S. Chen ◽  
R. Cheung ◽  
C. Ryu ◽  
...  

ABSTRACTCopper was electroplated on sputtered Cu seed layer with Ta diffusion barrier. We achieved enhanced Cu deposition at the bottom of trenches/vias and defect-free filling sub-0.5 μm trenches (down to 0.25 μm width) of high aspect ratio (up to 4:1). Large grains occupying the entire trench were observed. Bottom step coverage of electroplated copper in sub-0.5 μm trenches was estimated to be about 140%, while sidewalls step coverage was about 120%. Via resistance for sub-0.5 μm vias was measured to be below 0.55 Ω. Strong <111> texture, large grains, and low tensile stress were observed in electroplated Cu films and in-laid Cu lines after low temperature anneal.


1990 ◽  
Vol 187 ◽  
Author(s):  
C. S. Chang ◽  
J. C. Wang ◽  
L. C. Kuo

AbstractAn electron beam evaporation method has been used to prepare tin doped indium oxide (ITO) films with 95 wt.% In2O3 and 5 wt.% SnO2 in an oxygen atmosphere. It was found that the deposition rate and oxygen pressure strongly influence the film properties when the substrate temperature was lower than 200°C. In an optimal condition, highly transparent (transmittance ˜ 90% at wavelength 570 nm) and conductive (resistivity – 3×10−4Ω-cm) films of thickness around 2000 Å at substrate temperature as low as 180°C can be obtained.


1999 ◽  
Author(s):  
Fan-Gang Tseng ◽  
Gang Zhang ◽  
Uri Frodis ◽  
Adam Cohen ◽  
Florian Mansfeld ◽  
...  

Abstract EFAB (“Electrochemical FABrication”) is a new micromachining process utilizing an innovative “Instant Masking” (IM) technique to electrochemically deposit an unlimited number of metal layers for microfabrication. Through this approach, high-aspect-ratio microstructures with arbitrary 3-D geometry can be rapidly and automatically batch-fabricated at low temperature (&lt; 60 °C) using an inexpensive desktop machine. IC-MEMS integration can also be carried out by this low temperature process.


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33600-33613 ◽  
Author(s):  
Suhee Kang ◽  
Joonyoung Jang ◽  
Rajendra C. Pawar ◽  
Sung-Hoon Ahn ◽  
Caroline Sunyong Lee

The engineered high aspect ratio of Fe2O3 nanorods coated with g-C3N4 demonstrates z-scheme mechanism, showing the best performance in 4-nitrophenol photodegradation and H2 evolution.


2014 ◽  
Vol 53 (6) ◽  
pp. 068007 ◽  
Author(s):  
Daeseok Lee ◽  
Jiyong Woo ◽  
Sangsu Park ◽  
Euijun Cha ◽  
Sangheon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document