Characterization of Changes in Properties and Microstructure of Glassy Polymeric Carbon Following Au Ion Irradiation

2009 ◽  
Vol 1215 ◽  
Author(s):  
Malek Amir Abunaemeh ◽  
Mohamed Seif ◽  
Young Yang ◽  
Lumin Wang ◽  
Yanbin Chen ◽  
...  

AbstractThe TRISO fuel has been used in some of the Generation IV nuclear reactor designs [1,2]. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Au equivalent to a 1 displacement per atom (dpa) at samples prepared at 1000, 1500 and 2000°C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University. Transmission electron microscopy (TEM), Rutherford backscattering spectroscopy (RBS), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used for the analysis.

2009 ◽  
Vol 1181 ◽  
Author(s):  
Malek Amir Abunaemeh ◽  
Ibidapo Ojo ◽  
Mohamed Seif ◽  
Claudiu Muntele ◽  
Daryush Ila

AbstractThe TRISO fuel that is intended to be used for the generation IV nuclear reactor design consists of a fuel kernel of Uranium Oxide (UOx) coated in several layers of materials with different functions. One consideration for some of these layers is Silicon Carbide (SiC) [1]. The design, manufacture and fabrication of SiC are done at the Center for Irradiation of Materials (CIM). This light weight material can maintain dimensional and chemical stability in adverse environments and very high temperatures. The characterization of the elemental makeup of the SiC material used is done using X-ray photoelectron spectroscopy (XPS). Nano-indentation is used to determine the hardness, stiffness and Young's Modulus of the material. Raman Spectroscopy is used to characterize the chemical bonding for different sample preparation temperatures.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2013 ◽  
Vol 873 ◽  
pp. 152-157
Author(s):  
Long Long Chen ◽  
Jun Ming Li ◽  
Xiao Min Gong ◽  
Jian Li

Using a chemically induced transition in an FeCl2 solution, γ-Fe2O3 nanoparticles can be prepared from an amorphous precursor composed of FeOOH and Mg (OH)2. Surface modification by adding ZnCl2 during liquid-phase synthesis was attempted. The magnetization, morphology, crystal structure, and chemical species of as-prepared samples were characterized by vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray energy-dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the surface of the γ-Fe2O3 nanoparticles can be modified by adding ZnCl2 to form composite nanoparticles with a γ-Fe2O3/ZnFe2O4 ferrite core coated with Zn (OH)2 and absorbed FeCl36H2O; this modification can be enhanced by additional NaOH.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


1999 ◽  
Vol 14 (5) ◽  
pp. 1782-1790 ◽  
Author(s):  
X. L. Dong ◽  
Z. D. Zhang ◽  
S. R. Jin ◽  
W. M. Sun ◽  
X. G. Zhao ◽  
...  

Ultrafine Fe–Ni(C) particles of various compositions were prepared by arc discharge synthesis in a methane atmosphere. The particles were characterized by x-ray diffraction, transmission electron microscopy, energy disperse spectroscopy, chemical analysis, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and magnetization measurement. The carbon atoms solubilizing at interstitial sites in γ–(Fe, Ni, C) solution particles have the effects of forming austenite structure and changing microstructures as well as magnetic properties. A carbon layer covers the surface of Fe–Ni(C) particles to form the nanocapsules and protect them from oxidization. The mechanism of forming Fe–Ni(C) nanocapsules in the methane atmosphere was analyzed.


2018 ◽  
Vol 54 ◽  
pp. 127-135
Author(s):  
Wen Zhao ◽  
Wen Cai Wang ◽  
Yong Lai Lu ◽  
Li Qun Zhang

Carbon nanotubes/alumina (CNTs/Al2O3) nanocomposites were prepared by the poly (dopamine) assisted chemical liquid phase deposition (CLPD). The poly (dopamine) layers were firstly coated on the CNTs surface uniformly by the self-oxidative polymerization of dopamine in mild aqueous solution and then the Al2O3 nanoparticles formed on the poly (dopamine) coated CNTs surface by the CLPD. The hydrophilic poly (dopamine) layers on the CNTs surface can improve the dispersion of CNTs in aqueous solution. Moreover, it can be used as a key linker between the CNTs and Al2O3 because of the nitrogen-containing group in poly (dopamine) could coordinate with Al3+ ions. The as-prepared poly (dopamine) coated CNTs and CNTs/Al2O3 nanohybrids were characterized by X-ray photoelectron spectroscopy (XPS), X-radial diffractometer (XRD) and high resolution transmission electron microscopy (HRTEM). These results showed that the poly (dopamine) layers were coated on the surface of CNTs uniformly, and the Al2O3 nanoparticles embellished with the poly (dopamine) coated CNTs surface. Compared with pristine NR composites, the thermal conductivity of the as-prepared NR/CNTs@Al2O3 composites increased 17%.


2001 ◽  
Vol 16 (10) ◽  
pp. 2805-2809 ◽  
Author(s):  
Yang Jiang ◽  
Yue Wu ◽  
Shengwen Yuan ◽  
Bo Xie ◽  
Shuyuan Zhang ◽  
...  

A simple and convenient solvothermal reaction has been developed to produce CuInS2 nanorods and nanotubes from the elements in ethylenediamine at 280 °C. The products were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. Analysis shows that the coordinating ability of ethylenediamine and the existence of liquid In may play important roles in the growth of one-dimension nanocrystallites and the electron-transfer reaction. In addition, spherical CuInS2 micrometer particles were obtained at 350 °C.


e-Polymers ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Chunhua Luo ◽  
Meijuan Qian ◽  
Qiujing Dong

AbstractThermosensitive PNIPAM-coated Au nanoparticles (AuNPs@P(NIPAM-co-MADMAC)) were synthesized by the radical “grafting through” copolymerization of 4-methacryloyloxy-4′-dimethylaminochalcone (MADMAC), MAEL-capped AuNPs and N-isopropylacrylamide (NIPAM) using azobisisobutyronitrile (AIBN) as the initiator. AuNPs@P(NIPAM-co-MADMAC) were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. AuNPs@P(NIPAM-co-MADMAC) exhibited thermo-sensitivity from poly(NIPAM-co-MADMAC) chains and sensitive fluorescence from the MADMAC group. AuNPs@P(NIPAM-co-MADMAC) showed weak fluorescence after the temperature increased from 25°C to 45°C, or after β-cyclodextrin (β-CD) was added. Furthermore, it exhibited strong fluorescence when the solvent was changed to ethanol or chloroform.


2006 ◽  
Vol 21 (1) ◽  
pp. 112-118 ◽  
Author(s):  
A. Vadivel Murugan ◽  
Mathieu Quintin ◽  
Marie-Helene Delville ◽  
Guy Campet ◽  
Annamraju Kasi Viswanath ◽  
...  

Here we demonstrate the synthesis of a new type of layered poly(3,4-ethylenedioxy- thiophene) (PEDOT)/MoS2 nanocomposite via flocculation of delaminated MoS2 with subsequent in situ oxidative polymerization of 3,4-ethylenedioxythiophene. The resulting nanocomposite was characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, thermal analysis, transmission electron microscopy, and four-probe electrical conductivity measurements with respect to temperature. X-ray diffraction results indicated that the exfoliated MoS2 and PEDOT are restacked to produce a novel nanoscale composite material containing alternate nanoribbons of PEDOT in between MoS2 with a basal distance of ∼1.38 nm. The nanocomposite, which could be used as a cathode material for small power rechargeable lithium batteries, has also been demonstrated by the electrochemical insertion of lithium into the PEDOT/MoS2 nanocomposite, where a significant enhancement in the discharge capacity is observed, compared to that of respective pristine molybdenum disulfide.


Sign in / Sign up

Export Citation Format

Share Document