Self-Assembly of Inorganic/Organic Multilayer Films

1994 ◽  
Vol 351 ◽  
Author(s):  
Astrid C. Zeppenfeld ◽  
Catherine J. Page

ABSTRACTIn order to investigate the influence of substrate functionalization on the subsequent selfassembly of multilayer films, multilayers composed of alternating hafnium and 1,10-decanediylbis(phosphonic) acid (DBPA) have been grown on three different substrates. Substrates studied include gold wafers functionalized with 4-mercaptobutylphosphonic acid, silicon wafers functionalized using a hafnium oxychloride solution, and silicon wafers coated with an octadecylphosphonate LB-template layer. The nature of these films is probed using ellipsometry and grazing angle x-ray diffraction. These studies indicate that the overall order and the individual layer thickness can vary substantially from sample to sample and depend strongly on the initial surface functionalization prior to multilayer growth.

1995 ◽  
Vol 403 ◽  
Author(s):  
J. D. Jarratt ◽  
J. A. Barnard

AbstractGiant magnetoresistance (GMR), structure, and magnetic properties of sputtered (Co90Fe10 X Å/Ag Y Å) multilayer films have been investigated. Distinct GMR behaviors including granulartype (GGMR) and ‘discontinuous’ (DGMR) are observed which are strongly dependent on the individual CoFe and Ag layer thicknesses; however, standard multilayer GMR and the associated antiferromagnetic (AFM) coupling is absent. The multilayer structure, individual layer thicknesses, and growth texture were investigated using high and low angle x-ray diffraction (HXRD & LXRD).


1994 ◽  
Vol 351 ◽  
Author(s):  
Michael A. Ansell ◽  
Astrid C. Zeppenfeld ◽  
William K. Ham ◽  
Catherine J. Page

ABSTRACTProgress has been made towards the development of inorganic-organic multilayered films modeled after Hofmann clathrate compounds. Cobalt-bipyridine multilayers were grown layer by layer on a silicon substrate. The resulting films were characterized using ellipsometry, grazing angle X-ray diffraction, Auger electron spectroscopy and EPMA (Electron Probe Micro- Analysis). Results indicate that moderately well ordered layers have been synthesized, but cross-linking with M(CN)42(M = Ni, Pd, or Pt) to simulate the model structure does not significantly occur.


1996 ◽  
Vol 436 ◽  
Author(s):  
J. D. Jarratt ◽  
V. R. Inturi ◽  
J. L. Weston ◽  
J. A. Barnard

AbstractStress, giant magnetoresistance (GMR), structure, and magnetic properties of sputtered (Co90Fe10X Å/Ag Y Å)×20 multilayer films have been investigated at room temperature where X ranges from 7.5 to 25 Å and Y from 10 to 60 Å. These films exhibit distinct GMR behaviors dependent on individual layer thicknesses, including layered granular-type GMR in CoFe 7.5 Å samples and ‘discontinuous’ GMR (DGMR) in CoFe 15 and 25 Å samples with Ag thicknesses over 30 Å. No antiferromagnetic coupling was observed. CoFe 10 Å samples act as a transition between GMR behaviors. Compressive stress decreases with increasing Ag thickness in the CoFe 7.5 Å samples. In the CoFe 15 and 25 Å samples the stress fluctuates similarly depending on Ag thickness. The difference in stress and MR behavior between the CoFe 7.5 Å and the 15 and 25 Å samples is thought to be due to incomplete CoFe layering in the CoFe 7.5 Å samples. In the CoFe 15 Å DGMR samples, high temperature annealing resulted in tensile stresses large enough to cause film detachment. X-ray diffraction reveals a strong (111) growth texture as well as satellite peaks from coherent layering. This (111) texture is also evidenced by patterns with hexagonal symmetry formed by the detached films.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2010 ◽  
Vol 89-91 ◽  
pp. 503-508 ◽  
Author(s):  
J. Sheng ◽  
U. Welzel ◽  
Eric J. Mittemeijer

The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.


Author(s):  
P. Vojtíšek ◽  
I. Císařová ◽  
J. Podlaha ◽  
Z. Žák ◽  
S. Böhm ◽  
...  

AbstractCrystal structures of the title compounds were determined by single crystal X-ray diffraction. Absolute configuration of the barium salt of (+)-(


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2013 ◽  
Vol 401-403 ◽  
pp. 663-666
Author(s):  
Xue Lian Bai ◽  
Jian Ting Mei ◽  
Zhong Guo Mu ◽  
Yun Bai

Polyaniline (PANI) nanotubes were synthesized separately using amino acetic acid (AA), ethylenediamine tetraacetic acid (EDTA), oxalic acid (OA) as dopant and ammonium persulfate (APS) as oxidant by a self-assembly method. SEM, TEM,FTIR and X-ray diffraction (XRD) and applying the 4 probes method characterized the morphology, structure and property of the product. It was found that nanotubes morphology were synthesized when the [Aci/[A ratio is 1:2.The room template conductivity of the products were studied.


1991 ◽  
Vol 238 ◽  
Author(s):  
Y. Huai ◽  
R. W. Cochrane ◽  
Y. Shi ◽  
H. E. Fischer ◽  
M. Sutton

ABSTRACTThe structures of equal-thickness Co/Re multilayer films and several Co/Re bilayer films have been investigated by X-ray diffraction at low and high angles. Analysis of low-angle reflectivity data from bilayer films indicates that interfacial intermixing is limited to three monolayers and that the two interfacial configurations are different. The high-angle X-ray diffraction data show that multilayer films have coherent interfaces and a highly textured structure with hep [002] orientations normal to the film plane for periods 21 Å ≤ Λ ≤220 Å. Detailed structures have been determined by fitting the X-ray spectra to calculated ones using a trapezoidal model. The results indicate that samples with 42 Å≤ Λ ≤220 Å have relatively sharp interfaces, in good agreement with the bilayer results. In addition, an out-of-plane expansion of the Co (002) layer is observed in samples with large Λ and results from structural disorder leading to a reduced atomic density. For Λ <21 Å the interfaces arise from the rougher surfaces of the deposited layers.


1949 ◽  
Vol 1 (3) ◽  
pp. 211-224
Author(s):  
G. B. Greenough

SummaryMany papers have been written on the measurement of strain by X-ray diffraction methods and on the interpretation of these strains in terms of stresses. Whereas, during the past few years, the experimental methods of determining the strains have. remained largely unchanged, research has shown that the older techniques for calculating stresses from strains are not always valid.In this paper an attempt is made to describe some of the principles of strain measurement by X-ray diffraction methods to those who are unfamiliar with the methods. The types of stress and strain systems which may exist in polycrystalline metals are then considered, particular attention being paid to the effect of the elastic and plastic anisotropy of the individual crystals. Some indication is given as to how the earlier methods of interpreting X-ray strain measurements should be modified, but no rigid routine method is proposed for use in a general case.


Sign in / Sign up

Export Citation Format

Share Document