grazing angle
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 57)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 151 (1) ◽  
pp. 106-125
Author(s):  
Murat Kucukosmanoglu ◽  
John A. Colosi ◽  
Peter F. Worcester ◽  
Matthew A. Dzieciuch ◽  
Derek R. Olson ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8315
Author(s):  
Guangwei Zhang ◽  
Ping Li ◽  
Guolin Li ◽  
Ruili Jia

With the continuous advancement of electronic technology, terahertz technology has gradually been applied on radar. Since short wavelength causes severe ground clutter, this paper studies the amplitude distribution statistical characteristics of the terahertz radar clutter based on the measured data, and provides technical support for the radar clutter suppression. Clutter distribution is the function of the radar glancing angle. In order to achieve targeted suppression, in this paper, selected axial integral bispectrum (selected AIB) feature is selected as deep belief network (DBN)input to complete the radar glancing angle recognition and the network structure, network training method, robustness are analyzed also. The ground clutter amplitude distribution can follow normal distribution at 0~45° grazing angles. The Weibull distribution and G0 distribution can describe the amplitude probability density function of ground clutter at grazing angles 85° and 65°. The recognition rate of different signal grazing angles can reach 91% on three different terrains. At the same time, the wide applicability of the selected AIB feature is verified. The analysis results of ground clutter amplitude characteristics play an important role in the suppression of radar ground clutter.


2021 ◽  
Vol 16 (12) ◽  
pp. P12018
Author(s):  
Q. Yu ◽  
B. Tang ◽  
C. Huang ◽  
Y. Wei ◽  
S. Chen ◽  
...  

Abstract On 23rd August 2018, the China Spallation Neutron Source (CSNS) located in Dongguan operated 4 neutron instruments. In the future, twenty neutron spectrometers will be built to provide multidisciplinary platforms for scientific research by national institutions, universities, and industries. Engineering Material Diffractometer (EMD), which will be used for strain measurements in engineering materials and components, will be constructed at the Beamline 8 in 2022. A novel thermal neutron detector, which will comply with the requirements of EMD application, is being developed. This detector will consist of 6LiF/ZnS(Ag) scintillation screens, wavelength shifting fiber (WLSF) arrays, a silicon photomultiplier (SiPM) and Application Specific Integrated Circuit (ASIC) read-out electronics. Each scintillation screen will be inclined with respect to the incident neutron beam at a grazing angle θ = 17°. Such geometry will not only improve the spatial resolution of detectors but also the neutron detection efficiency. The prototype of detector module has been tested at the neutron Beamline 20 at the CSNS. The experimental results obtained for this prototype illustrate that the pixel size of detector module is 3 mm and the detection efficiency exceeds 40% at the neutron wavelength of 1 Å. Based on these results, we design and manufacture the final version of the detector for the EMD application, which is characterized by low power consumption, highly integrated and easy to install. 70 such detectors will be installed till the end of 2021.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingjing Wang ◽  
Lixin Guo ◽  
Yiwen Wei ◽  
Shuirong Chai ◽  
Ke Li ◽  
...  

A new electromagnetic (EM) scattering model of the sea surface with single breaking waves is proposed based on the high-frequency method in this paper. At first, realistic breaking wave sequences are obtained by solving the fluid equations which are simplified. Then, the rough sea surface is established using the linear filtering method. A new wave model is obtained by combining breaking waves with rough sea surface using a 3D coordinate transformation. Finally, the EM scattering features of the sea surface with breaking waves are studied by using shooting and bouncing rays and the physical theory of diffraction (SBR-PTD). It is found that the structure that is similar to a dihedral corner reflector between the breaking wave and rough sea surface exhibits multiple scattering, which leads to the sea-spike phenomenon that the scattering result of horizontal (HH) polarization is larger than that of vertical (VV) polarization, especially at low-grazing-angle (LGA) incidents with upwind. The sea-spike phenomenon is also closely related to the location of strong scattering.


2021 ◽  
Author(s):  
Stephen Bocquet

<div> <div> <div> <p>Two examples of low grazing angle radar sea clutter, both well described by the compound K-distribution model, are studied. Pulse Doppler processing is applied to obtain two dimensional range-time textures for the intensity, centroid and width of the Doppler spectrum. The first example exhibits a monochromatic swell pattern, allowing phase averaging to be applied to the textures. The second example has a more typical ocean wave spectrum. The intensity textures are gamma distributed, consistent with the compound K-distribution model, but the Doppler spectrum centroid and width textures are also found to be gamma distributed. Based on this analysis, a new method for simulation of coherent radar sea clutter is proposed, where separate memoryless nonlinear transformations are applied to a simulated water surface to generate the spatially and temporally varying intensity, centroid and width of the Doppler spectrum. The method builds on the evolving Doppler spectrum model for radar sea clutter simulation and established methods for simulation of water surfaces. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Stephen Bocquet

<div> <div> <div> <p>Two examples of low grazing angle radar sea clutter, both well described by the compound K-distribution model, are studied. Pulse Doppler processing is applied to obtain two dimensional range-time textures for the intensity, centroid and width of the Doppler spectrum. The first example exhibits a monochromatic swell pattern, allowing phase averaging to be applied to the textures. The second example has a more typical ocean wave spectrum. The intensity textures are gamma distributed, consistent with the compound K-distribution model, but the Doppler spectrum centroid and width textures are also found to be gamma distributed. Based on this analysis, a new method for simulation of coherent radar sea clutter is proposed, where separate memoryless nonlinear transformations are applied to a simulated water surface to generate the spatially and temporally varying intensity, centroid and width of the Doppler spectrum. The method builds on the evolving Doppler spectrum model for radar sea clutter simulation and established methods for simulation of water surfaces. </p> </div> </div> </div>


2021 ◽  
Vol 150 (4) ◽  
pp. A26-A26
Author(s):  
Murat Kucukosmanoglu ◽  
John A. Colosi ◽  
Christopher W. Miller ◽  
Peter F. Worcester ◽  
Matthew A. Dzieciuch ◽  
...  
Keyword(s):  
Sea Ice ◽  

2021 ◽  
Vol 9 (9) ◽  
pp. 1010
Author(s):  
Dai Liu ◽  
Zhenglin Li ◽  
Guangxu Wang ◽  
Yunfeng Liu

An undulating bottom in shallow water has a significant effect on sound propagation. An acoustic propagation experiment was carried out in the East China Sea in 2020. Measurements along two separate propagation tracks with flat and undulating bottoms were obtained. Abnormal transmission losses (TLs) were observed along the track with the undulating bottom. By using the parabolic equation model RAM and ray theory, these abnormal TLs and the distribution of the sound field energy were analyzed. Numerical simulations indicate that under the shallow water condition with a negative thermocline and for a high frequency (1000 Hz), the incidence and reflection angles of sound rays on the sea bottom are changed due to the undulating sea bottom. The larger the inclination angle of the undulating bottom, the greater the grazing angle changes. These angles changes lead to different sound propagation paths for the undulating bottom and the flat bottom, resulting in the difference of TLs at a certain distance and depth. The undulating bottom will cause energy convergence in the mixed layer when the source and receiver locate above the thermocline.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1066
Author(s):  
Maria Surmeneva ◽  
Irina Grubova ◽  
Natalia Glukhova ◽  
Dmitriy Khrapov ◽  
Andrey Koptyug ◽  
...  

High-current pulsed electron-beam (PEB) treatment was applied as a surface finishing procedure for Ti–35Nb–7Zr–5Ta (TNZT) alloy produced by electron beam melting (EBM). According to the XRD results the TNZT alloy samples before and after the PEB treatment have shown mainly the single body-centered cubic (bcc) β-phase microstructures. The crystallite size, dislocation density, and microstrain remain unchanged after the PEB treatment. The investigation of the texture coefficient at the different grazing angle revealed the evolution of the crystallite orientations at the re-melted zone formed at the top of the bulk samples after the PEB treatment. The top-view SEM micrographs of the TNZT samples treated by PEB exhibited the bcc β-phase grains with an average size of ~85 μm. TEM analysis of as-manufactured TNZT alloy revealed the presence of the equiaxed β-grains with the fine dispersion of nanocrystalline α and NbTi4 phases together with β-Ti twins. Meanwhile, the β phase regions free of α phase precipitation are observed in the microstructure after the PEB irradiation. Nanoindentation tests revealed that the surface mechanical properties of the melted zone were slightly improved. However, the elastic modulus and microhardness in the heat-affected zone and the deeper regions of the sample were not changed after the treatment. Moreover, the TNZT alloy in the bulk region manufactured by EBM displayed no significant change in the corrosion resistance after the PEB treatment. Hence, it can be concluded that the PEB irradiation is a viable approach to improve the surface topography of EBM-manufactured TNZT alloy, while the most important mechanical parameters remain unchanged.


Sign in / Sign up

Export Citation Format

Share Document