Effect of the Crystallinity of V6O13 Films on the Electrochemical Behavior of Lithium Microbatteries

1994 ◽  
Vol 369 ◽  
Author(s):  
A. Gorenstein ◽  
A. Khelfa ◽  
J.P. Guesdon ◽  
C. Julien

AbstractElectrochemical characteristics of Li/V6O13 microbatteries are evaluated in relation with the crystallinity and morphology of thin-film cathodes. Thin films of V6O13 were prepared using the flash evaporation technique. Amorphous and polycrystalline samples were characterized by X-Ray diffraction, Raman spectroscopy and conductivity measurements. The effect of either deposition parameters or post-deposition treatment are presented in this work. Thermodynamics and kinetics of lithium insertion were studied in V6O13 thin films obtained with various growth conditions. Discharge curves present different types of behavior depending on the cathode morphology. Diffusion coefficients and enhancement factors were calculated as a function of the degree of lithium intercalation.

1994 ◽  
Vol 369 ◽  
Author(s):  
C. Julien ◽  
A. Gorenstein ◽  
A. Khelfa ◽  
J.P. Guesdon ◽  
I. Ivanov

AbstractThin films of V2O5 were prepared using the flash-evaporation technique. Amorphous and polycrystalline samples were characterized by X-ray diffraction, Raman spectroscopy and XPS analysis. The electrical properties of the samples were determined. The effect of either deposition parameters or post-deposition treatments, i.e., annealing in various atmospheres and at different temperatures, on transport properties are presented.Electrochemical characteristics are evaluated in V2O5/LiCIO4-PC/Li microbatteries. The discharge curves present several voltage plateaus, similar to those already observed in cells with bulk V2O5 cathodes. Kinetics of lithium intercalation have been investigated as a function of the growth conditions of V2O5 films. Chemical diffusion coefficient and enhancement factor are calculated as a function of the degree of lithium intercalation. All the results are compared with previous reported results for bulk vanadium oxides. The relationship between the crystallinity of the films and their electrochemical features is also discussed.


Author(s):  
J.P. Goral ◽  
M.M. Al-Jassim ◽  
D. Albin ◽  
J.R. Tuttle ◽  
R. Noufi

Polycrystalline thin films of CuInSe2 and CuGaSe2 are currently being developed as low-cost photovoltaic devices. These films are vacuum-deposited onto molybdenum metallized alumina substrates. The film composition may be varied by manipulation of the deposition parameters. For photovoltaic applications, the desired phase has a stoichiometry close to CuInSe2. This compound is a zincblende variant, the cations and anions occupying separate fcc sublattices. Under certain growth conditions, the Cu and In atoms adopt an ordered configuration within the cationic sublattice resulting in the tetragonal chalcopyrite structure. Even when the deposition parameters are manipulated to produce nominally stoichiometric films, powder x-ray traces often exhibit anomalous peaks indicative of the presence of impurity phases. The identification of these minority phases by x-ray diffraction alone is not possible in this materials system due to low peak intensity and overlap considerations. The formation of the secondary phases has a detrimental effect on the electrical and optical properties of the thin film device.


1989 ◽  
Vol 4 (1) ◽  
pp. 185-188 ◽  
Author(s):  
V. Samuel ◽  
V. J. Rao

Conditions have been developed for the preparation of ZnP2 and deposition of its stoichiometric thin films, using the flash evaporation technique. Structural properties of the ZnP2 obtained have been studied using x-ray diffraction, and chemical composition has been established by the polarography technique. Optical absorption of thin films of β–ZnP2 has been investigated over the range 1.2–3.2 eV. Analysis of thin film data showed that β–ZnP2 is a direct band gap material. The XPS and UPS of β–ZnP2 show a shift in binding energy (BE), which is due to transfer of electrons from zinc to phosphorus.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


2011 ◽  
Vol 8 (2) ◽  
pp. 581-587
Author(s):  
Baghdad Science Journal

Crystalline In2O3 Thin films have been prepared by flash evaporation. We have studied the crystal structure of as deposited at 303K and annealed at 523K using X-ray diffraction. The Hall Effect measurements confirmed that electrons were predominant charges in the conduction process (i.e n-type).It is found that the absorption coefficient of the prepared films decreases with increasing Ta. The d.c conductivity study showed that the conductivity increase with increasing Ta , whereas the activation energy decreases with increasing Ta. Also we study the barrier tunneling diode for In2O3/Si heterostructure grown by Flash evaporation technique. (capacitance-voltage C-V) spectroscopy measurements were performed at 303 K and at the annealing temperature 523K. The built in voltage has been determined and it depends strongly on the annealing process of the heterojunction. From all above measurements we assumed an energy band diagram for In2O3 /Si(P-type) heterojunction.


2019 ◽  
Vol 14 (29) ◽  
pp. 55-72
Author(s):  
Bushra A. Hasan

Alloys of InxSe1-x were prepared by quenching technique withdifferent In content (x=10, 20, 30, and 40). Thin films of these alloyswere prepared using thermal evaporation technique under vacuum of10-5 mbar on glass, at room temperature R.T with differentthicknesses (t=300, 500 and 700 nm). The X–ray diffractionmeasurement for bulk InxSe1-x showed that all alloys havepolycrystalline structures and the peaks for x=10 identical with Se,while for x=20, 30 and 40 were identical with the Se and InSestandard peaks. The diffraction patterns of InxSe1-x thin film showthat with low In content (x=10, and 20) samples have semicrystalline structure, The increase of indium content to x=30decreases degree of crystallinity and further increase of indiumcontent to x=40 leads to convert structure to amorphous. Increase ofthickness from 300 to 700nm increases degree of crystallinity for allindium content. Transmittance measurements were used to calculaterefractive index n and the extinction coefficient k using Swanepole’smethod. The optical constants such as refractive index (n), extinctioncoefficient (k) and dielectric constant (εr, εi) increases for low indiumcontent samples and decreases for high indium content samples,while increase of thickness increases optical constants for all xvalues. The oscillator energy E0, dispersion energy Ed, and otherparameters have been determined by Wemple - DiDomenico singleoscillator approach.


MRS Advances ◽  
2019 ◽  
Vol 4 (37) ◽  
pp. 2023-2033
Author(s):  
Barys Korzun ◽  
Marin Rusu ◽  
Thomas Dittrich ◽  
Anatoly Galyas ◽  
Andrey Gavrilenko

ABSTRACTThin films of haycockite Cu4Fe5S8 on glass substrates were deposited by flash evaporation technique from powders of this compound. The composition of thin films correspond to the atomic content of Cu, Fe, and S of 24.13, 27.90, and 47.97 at.% with the Cu/ Fe and S/ (Cu + Fe) atomic ratios of 0.87 and 0.92 respectively, whereas the corresponding theoretical values for this material amount to 0.80 and 0.89. The as-prepared thin films of haycockite consist of a set of separate fractions of approximately identical areas of about 400 - 600 μm2. It can be assumed that this structure evolved during cooling down of thin films since it completely covers the surface of thin films. A small inclusion of a second phase with the chemical composition close to talnakhite Cu9Fe8S16 is also observed. Haycockite Cu4Fe5S8 is found to be a direct gap semiconductor with the energy band gap Eg equal to 1.26 eV as determined using both transmission and surface photovoltage methods.


1998 ◽  
Vol 13 (1) ◽  
pp. 197-204 ◽  
Author(s):  
B. A. Baumert ◽  
L-H. Chang ◽  
A. T. Matsuda ◽  
C. J. Tracy ◽  
N. G. Cave ◽  
...  

Physical and electrical characterization techniques have been applied to the problem of developing a lower temperature process for spin-on Ba0.7Sr0.3TiO3 thin films and capacitors compatible with on-chip aluminum metallization. The films were prepared by spin-coating from carboxylate precursors and were processed at temperatures between 650 °C and 450 °C. Capacitors annealed at higher temperatures have a dielectric constant (κ) of 382, a C/A of 20 fF/μm2, and a leakage current density of 2 × 10−7 A/cm2 at 3.3 V. Those processed at 450 °C show occasionally promising but inconsistent results, correlated using TEM images with locally variable crystallization into the perovskite phase. The kinetics of the spin-on solution chemical decomposition and crystallization has been investigated through the use of x-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document