Transmission Electron Microscopy Study of Room Temperature Lasing Epitaxial ZnO Films on Sapphire

1997 ◽  
Vol 482 ◽  
Author(s):  
N. Wang ◽  
K. K. Fung ◽  
P. Yu ◽  
Z. K. Tang ◽  
G. K. L. Wong ◽  
...  

AbstractWe have studied the microstructures of lasing and non-lasing ZnO films on sapphire in plan-view and cross-section by transmission electron microscopy (TEM). While ZnO films in general are made up of cloumnar close-packed c-axis misoriented nanocrystals, the misorientation in nonlasing film, typically 5°, is considerably larger than lasing film, typically less than 1°. A rather high density of pinholes or nanotubes is associated with the highly misoriented films. The misorientation between adjacent grains is taken up by grain boundary dislocations. Room temperature lasing films contain a high density of threading boundary edge dislocations, in excess of 1010 cm−2. But faceting in the columnar nanocrystals is not well developed so that the grain boundaries are not clearly visible. Tilting of (0001) lattice planes between grains originating from substrate surface step and growth fault step, however, has been observed in high resolution electron microscopy (HREM) images.

1994 ◽  
Vol 332 ◽  
Author(s):  
Olof C. Hellman

ABSTRACTReal space plan-view Transmission Electron Microscopy (TEM) of the interfacial structure at the amorphous-Ge / Si (111) interface is presented. Ge is deposited at between room temperature and 150°C on either a 5×5 or 7×7 reconstructed surface. Conventional Plan-view TEM analysis reveals microstructural details such as surface steps, reconstruction phase shift boundaries and the reconstruction itself buried under the amorphous film, features which have previously been seen only as clean surfaces in UHV. Also imaged are small regions where Ge grows epitaxially on the Si surface above room temperature. These are seen to appear preferentially at steps and phase shift boundaries.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. C. Nicol ◽  
M. L. Jenkins ◽  
N. Wanderka ◽  
C. Abromeit

AbstractThe stability of Cu precipitates in an Fe-1.3wt%Cu alloy under 300 keV Fe+ion irradiation has been investigated using transmission electron microscopy and high-resolution electron microscopy. The irradiations were carried out between room temperature and 550°C at displacement rates of 103 to 10−2 dpa(s)−1 to fluences of up to 30 dpa. Copper precipitates were found to keep their shape but decrease in size under all irradiation conditions. The results are discussed within the framework of a competitive process between irradiation induced ballistic destruction of precipitates by cascades and irradiation-enhanced precipitation.


2005 ◽  
Vol 877 ◽  
Author(s):  
M. Wei ◽  
N. Khare ◽  
K. A. Yates ◽  
D. Zhi ◽  
J. L. MacManus-Driscoll

AbstractNanosized Co-doped ZnO samples were synthesized using an ultrasonic spray assisted chemical vapour deposition method. Microstructural and magnetic properties of these samples were studied. The room-temperature ferromagnetism was observed in the Co-doped ZnO. Also, x-ray analysis revealed a wurtzite ZnO structure with a small change of the lattice constants due to the doping of Co in ZnO. Raman spectroscopy of the Co-doped ZnO films indicated direct substitution of Co. Scanning electron microscopy showed nanostructured Co-doped ZnO with a ring or cup shape. Transmission electron microscopy analysis revealed nano grains within the rings of an average diameter of around 10 nm. Both energy dispersive spectroscopy and energy-filtered transmission electron microscopy indicated a uniform distribution of Co.


2001 ◽  
Vol 16 (2) ◽  
pp. 489-502 ◽  
Author(s):  
M. A. Zurbuchen ◽  
J. Lettieri ◽  
Y. Jia ◽  
D. G. Schlom ◽  
S. K. Streiffer ◽  
...  

Portions of the same epitaxial (103)-oriented SrBi2Nb2O9 film grown on (111) SrTiO3 for which we recently reported the highest remanent polarization (Pr) ever achieved in SrBi2Nb2O9 (or SrBi2Ta2O9) films, i.e., Pr = 15.7 μC/cm2, have been characterized microstructurally by plan-view and cross-sectional transmission electron microscopy (TEM) along three orthogonal viewing directions. SrBi2Nb2O9 grows with its c axis tilted 57° from the substrate surface normal in a three-fold twin structure about the substrate [111], with the growth twins' c axes nominally aligned with the three 〈100〉 SrTiO3 directions. (103) SrBi2Nb2O9 films with and without an underlying epitaxial SrRuO3 bottom electrode have been studied. Dark-field TEM imaging over a 12 μm2 area shows no evidence of second phases (crystalline or amorphous). A high density of out-of-phase boundaries exists in the films.


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Author(s):  
Kazue Nishimoto ◽  
Miki Muraki ◽  
Ryuji Tamura

AbstractTernary Ag–In–(Eu, Ce) 1/1 approximants are synthesized and their structures are studied by transmission electron microscopy (TEM). For both the approximants, superlattice spots are clearly observed at room temperature, and the superstructures of the Ag–In–(Eu, Ce) approximants are found to be similar to those of Cd


Sign in / Sign up

Export Citation Format

Share Document