The Control and Impact of Processing Ambient During RTP

1998 ◽  
Vol 514 ◽  
Author(s):  
Karen Maex ◽  
Eiichi Kondoh ◽  
Anne Lauwers ◽  
Muriel DePotter ◽  
Joris Prost

ABSTRACTThe introduction of rapid thermal processing for silicide formation has triggered a lot of research to temperature uniformity and reproducibility in RTP systems. From the other side there has been the demand to make the process itself as robust as possible for temperature variations. Indeed the way the module is set up can open or close the thermal process window for silicidation. In addition to the temperature, the ambient control is to be taken into account. Although gasses are specified to a low level of contaminants, the RTP step needs to be optimized for optimal contaminant reduction. Besides, the process wafer itself can be a source of contamination. In this paper an overview will be given of the role of temperature and ambient during RTP on the silicidation processes. The effect of the wafer on ambient purity will be highlighted. It will be shown that the latter can also have an impact on other process steps in the interconnect technology.

1998 ◽  
Vol 525 ◽  
Author(s):  
K. Maex ◽  
E. Kondoh ◽  
A. Lauwers ◽  
A. Steegen ◽  
M. De Potter ◽  
...  

ABSTRACTThe introduction of rapid thermal processing for silicide formation has triggered a lot of research to temperature uniformity and reproducibility in RTP systems. In addition to the temperature, the ambient control is to be taken into account. Although gasses are specified to a low level of contaminants, the RTP step needs to be optimised for optimal contaminant reduction. Besides, the process wafer itself is a source of contamination.In this paper an overview will be given of the role of RTP ambient on the silicidation processes. The effect of the wafer on ambient purity will be highlighted. It will be shown that the use of a reactive capping layer during silicidation represents an adequate solution for both sources of contamination.


1996 ◽  
Vol 11 (2) ◽  
pp. 412-421 ◽  
Author(s):  
A. V. Amorsolo ◽  
P. D. Funkenbusch ◽  
A. M. Kadin

A parametric study of titanium silicide formation by rapid thermal processing was conducted to determine the effects of annealing temperature (650 °C, 750 °C), annealing time (30 s, 60 s), wet etching (no HF dip, with HF dip), sputter etching (no sputter etch, with sputter etch), and annealing ambient (Ar, N2) on the completeness of conversion of 60 nm Ti on (111)-Si to C54–TiSi2 based on sheet resistance and the uniformity of the sheet resistance measurements across the entire wafer. Statistical analysis of the results showed that temperature, annealing ambient, and sputter etching had the greatest influence. Increasing the temperature and using argon gas instead of nitrogen promoted conversion of the film to C54–TiSi2. On the other hand, sputter etching retarded it. The results also indicated significant interactions among these factors. The best uniformity in sheet resistance was obtained by annealing at 750 °C without sputter etching. The different sheet resistance profiles showed gradients that were consistent with expected profile behaviors, arising from temperature variations across the wafer due to the effect of a flowing cold gas and the effects of the wafer edge and flats.


2002 ◽  
Vol 745 ◽  
Author(s):  
Erik Haralson ◽  
Tobias Jarmar ◽  
Johan Seger ◽  
Henry H. Radamson ◽  
Shi-Li Zhang ◽  
...  

ABSTRACTThe reactions of Ni with polycrystalline Si, Si0.82Ge0.18 and Si0.818Ge0.18C0.002 films in two different configurations during rapid thermal processing were studied. For the usually studied planar configuration with 20 nm thick Ni on 130–290 nm thick Si1-x-yGexCy, NiSi1-xGex(C) forms at 450°C on either Si0.82Ge0.18 or Si0.818Ge0.18C0.002, comparable to NiSi formed on Si. However, the agglomeration of NiSi1-xGex(C) on Si0.818Ge0.18C0.002 occurs at 625°C, about 50°C higher than that of NiSi1-xGex on Si0.82Ge0.18. For thin-film lateral diffusion couples, a 200-nm thick Ni film was in contact with 80–130 nm thick Si1-x-yGexCy through 1–10 μm sized contact openings in a 170 nm thick SiO2 isolation. While the Ni3Si phase was formed for both the Si0.82Ge0.18 and Si0.818Ge0.18C0.002 samples, the presence of 0.2 at.% C caused a slightly slower lateral growth.


1996 ◽  
Vol 429 ◽  
Author(s):  
J. C. Thomas ◽  
D. P. Dewitt

AbstractA Monte Carlo model is developed to simulate transient wafer heating as a function of system parameters in a kaleidoscope- or integrating light-pipe type cavity with square cross-section. Trends in wafer temperature uniformity are examined as a function of length-to-width ratio, cavity width, and the number of heating lamps. The effect on temperature determination by a radiometer placed in the bottom end wall of the cavity is simulated.


1995 ◽  
Vol 387 ◽  
Author(s):  
Andreas Tillmann

AbstractA new strategy based algorithm to optimize process parameter uniformity (e.g.sheet resistance, oxide thickness) and temperature uniformity on wafers in a commercially available Rapid Thermal Processing (RTP) system with independent lamp control is described. The computational algorithm uses an effective strategy to minimize the standard deviation of the considered parameter distribution. It is based on simulation software which is able to calculate the temperature and resulting parameter distribution on the wafer for a given lamp correction table. A cyclical variation of the correction values of all lamps is done while minimizing the standard deviation of the considered process parameter. After the input of experimentally obtained wafer maps the optimization can be done within a few minutes. This technique is an effective tool for the process engineer to use to quickly optimize the homogeneity of the RTP tool for particular process requirements. The methodology will be shown on the basis of three typical RTP applications (Rapid Thermal Oxidation, Titanium Silicidation and Implant Annealing). The impact of variations of correction values for single lamps on the resulting process uniformity for different applications will be discussed.


1993 ◽  
Vol 63 (1-4) ◽  
pp. 131-134 ◽  
Author(s):  
J.-M. Dilhac ◽  
C. Ganibal ◽  
N. Nolhier ◽  
P.B. Moynagh ◽  
C.P. Chew ◽  
...  

1989 ◽  
Vol 146 ◽  
Author(s):  
R. Kakoschek ◽  
E. BuβMann

ABSTRACTA complete theory of wafer heating during rapid thermal processing (RTP) is presented. Excellent agreement with experimental results of two commercial RTP systems is obtained. The temperature uniformity is limited by radiation loss at the wafer edge in the stationary state and by nonuniform illumination of the wafer during ramp-up. Structures on wafers are also potential sources for nonuniform heating. Considerable dynamic temperature inhomogeneities during rap-up might limitfu ture applications of RTPe specially when wafer sizes become larger. Possible improvements are suggested regarding adequate process cycling, chip and equipment design.


2019 ◽  
Vol 21 (18) ◽  
pp. 9384-9390 ◽  
Author(s):  
Xiaowei Li ◽  
Yong Zhou ◽  
Xiaowei Xu ◽  
Aiying Wang ◽  
Kwang-Ryeol Lee

A fast transfer-free synthesis of a graphene structure can be successfully achieved by Ni-catalysed transformation of amorphous carbon (a-C) during rapid thermal processing, but the role of the a-C structure in the a-C-to-graphene transformation is still unclear.


Sign in / Sign up

Export Citation Format

Share Document