Functionalized Copolymers and Their Composites with Polylactide And Hydroxyapatite

1998 ◽  
Vol 550 ◽  
Author(s):  
S. Jin ◽  
K. E. Gonsalves

AbstractSynthetic copolymers poly(E-caprolactone-co-vinylphosphonic acid) (P(MDOVPA) and poly(E-caprolactone-co-dimethylvinylphosphoester) (P(MDOVPE)) were used to prepare composites with polylactide (PLac) and hydroxyapatite (HAp). The P(MDOVPA) was used as filler in PLac films, as it has pendant functional groups P(O)(OH)2, providing nucleation sites for the deposition of HAp in simulated body fluid. HAp growth on PLac-P(MDOVPA) film was observed by XRD. The incorporation of hydrophilic P(MDOVPE) into PLac increased the hydrophilicity of the blend. Synthetic HAp was also used to make multi-layered, alternating organic-inorganic composites with porous PLac-P(MDOVPE) blends.

2008 ◽  
Vol 591-593 ◽  
pp. 697-702 ◽  
Author(s):  
Amanda Abati Aguiar ◽  
Valter Ussui ◽  
Christiane Ribeiro ◽  
Marcos A. Scapin ◽  
Dolores Ribeiro Ricci ◽  
...  

Induction of an apatite-forming ability on a 100% Y2O3-ZrO2, 100% Al2O3, and 80/20 and 20/80 wt% of zirconia-alumina (Y2O3-ZrO2-Al2O3) composite polycrystals via chemical treatment with 5M H3PO4 have been investigated. The chemical treatments produced Zr-O surface functional groups, which are known to be effective for apatite nucleation in simulated body fluid. It’s believed that Al-OH surface functional groups are not effective for apatite nucleation. I this work was shown that apatite nucleates in substrate of alumina treat and untreated chemically. This implies that Al- OH functional groups are effective for apatite nucleation.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Seiichi Taruta ◽  
Kazuki Kidokoro ◽  
Tomohiko Yamakami ◽  
Tomohiro Yamaguchi ◽  
Kunio Kitajima ◽  
...  

Carbon nanofibers (CNFs) were soaked in 1.5 simulated body fluid (1.5 SBF) in which inorganic ion concentrations are 1.5 times as high as those in the standard SBF. The influence of the CNFs content in 1.5 SBF and pretreatment of the CNFs on the biomimetical deposition of apatite were investigated. The spherical bone-like apatite particles were deposited on the pristine CNFs soaked in 1.5 SBF. Amount of deposited apatite per a unit of CNFs increased with a decrease in the CNFs content in 1.5 SBF, and it decreased markedly when the CNFs were pretreated with concentrated sulfuric acid/nitric acid (3 : 1 v/v) mixture for longer periods. Such results suggest that too many nucleation sites of apatite, which were functional groups, such as carboxyl and hydroxyl groups, existed on the CNFs in the 1.5 SBF, and most embryos formed on the sites could not grow to critical nuclei and furthermore did not grow to apatite.


2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

2010 ◽  
Vol 204 (8) ◽  
pp. 1236-1246 ◽  
Author(s):  
Romain d'Haese ◽  
Lech Pawlowski ◽  
Muriel Bigan ◽  
Roman Jaworski ◽  
Marc Martel

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2137
Author(s):  
Lubomir Medvecky ◽  
Maria Giretova ◽  
Radoslava Stulajterova ◽  
Lenka Luptakova ◽  
Tibor Sopcak

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.


2021 ◽  
Vol 4 (3) ◽  
pp. 2514-2522
Author(s):  
Odair Bim-Júnior ◽  
Fabiana Curylofo-Zotti ◽  
Mariana Reis ◽  
Yvette Alania ◽  
Paulo N. Lisboa-Filho ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Zexin Wang ◽  
Fei Ye ◽  
Liangyu Chen ◽  
Weigang Lv ◽  
Zhengyi Zhang ◽  
...  

In this work, ZK60 magnesium alloy was employed as a substrate material to produce ceramic coatings, containing Ca and P, by micro-arc oxidation (MAO). Atmospheric plasma spraying (APS) was used to prepare the hydroxyapatite layer (HA) on the MAO coating to obtain a composite coating for better biological activity. The coatings were examined by various means including an X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Meanwhile, an electrochemical examination, immersion test and tensile test were used to evaluate the in vitro performance of the composite coatings. The results showed that the composite coating has a better corrosion resistance. In addition, this work proposed a degradation model of the composite coating in the simulated body fluid immersion test. This model explains the degradation process of the MAO/APS coating in SBF.


Sign in / Sign up

Export Citation Format

Share Document