Experimental Study on the Role of Hydrogen in the Breakdown of Low-Temperature Si Epitaxy

2001 ◽  
Vol 686 ◽  
Author(s):  
J. Platen-Schwarzkopf ◽  
W. Bohne ◽  
W. Fuhs ◽  
K. Lips ◽  
J. Röhrich ◽  
...  

AbstractHomoepitaxial Si layers were grown on Si(100) at temperatures of 325 - 500 °C by Electron-Cyclotron Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR PECVD) from a gas mixture of SiH4,H2 and Ar. Ar was added in order to realize high growth rates where the breakdown of epitaxy was well observed. Si disorder depth profiles derived from RBS channeling spectra were compared with hydrogen depth distributions measured by Heavy-Ion Elastic Recoil Detection Analysis (HI-ERDA) and Secondary Ion Mass Spectroscopy (SIMS). The results suggest that the transition from epitaxial to amorphous growth proceeds through two stages: (1) a highly defective but still ordered growth with the defect density increasing as the growth proceeds and (2) the formation of conically shaped precipitates of amorphous Si. Both regions act as an increasingly effective sink for excessive hydrogen which diffuses from the growth surface into the bulk of the sample. In perfectly grown epitaxial films, where the overall concentration of excessive hydrogen was low, the hydrogen diffusion tail was found to extend far beyond the interface into the Si substrate.

2000 ◽  
Vol 638 ◽  
Author(s):  
W. Bohne ◽  
J. Röhrich ◽  
B. Selle ◽  
M. Birkholz ◽  
F. Fenske ◽  
...  

AbstractRutherford Backscattering Spectroscopy (RBS) and channeling studies with 1.4 MeV−4He ions as well as Heavy-Ion Elastic Recoil Detection Analysis (HI-ERDA) with 230 MeV 129Xe ions have been applied to characterize structural properties and the impurity content of thin Si films. The analytical potential of these ion-beam techniques is demonstrated for two types of samples: (1) μc-Si films prepared by dc magnetron sputtering in a pure Ar plasma and (2) homoepitaxial Si films deposited by low-temperature electron-cyclotron resonance PECVD at the transition from oriented to disordered growth. For μc-Si the atomic area density N.d obtained by RBS was compared with the optical thickness n.d (n=refractive index) derived from the interference structure of IR reflection spectra. It is shown that the ratio R=n.d/N.d of these quantities can serve as a figure of merit for the degree of crystalline order. An apparent similarity was found in the case of the epitaxially grown films between the Si disorder profiles evaluated from the RBS channeling spectra and the hydrogen and oxygen profiles determined by HI-ERDA. This suggests that hydrogen and oxygen are preferentially incorporated in the disordered parts of the films.


1999 ◽  
Vol 557 ◽  
Author(s):  
M. Birkholz ◽  
J. Platen ◽  
I. Sieber ◽  
W. Bohne ◽  
J. Röhrich ◽  
...  

AbstractSilicon films were grown on (100) n-Si with an electron-cyclotron resonance chemical vapor deposition (ECRCVD) system by decomposition of SiH4 at 325°C. Structure and composition of thin films were investigated by SEM, Raman spectroscopy, elastic recoil detection analysis (ERDA) and TEM. Excellent epitaxial growth was achieved for some hundred nm thickness. For more than 1 μm thick films, however, SEM revealed the occurrence of conical structures orientated upside-down with their basal plane in the film surface. Depth-profiling of the elemental composition of thin films by means of ERDA showed the hydrogen content CH to exhibit a pronounced increase with increasing film thickness. Raman spectroscopy evidenced the coexistence of c-Si and a-Si:H by the occurrence of two bands at 520 and 480 cm-1, the ratio of which was found to depend sensitively upon the position of the laser spot on the sample. All experimental results could be consistently explained by assuming the conical precipitates to consist of a-Si:H which was finally proven by coherent electron beam diffraction (CEBD).


2001 ◽  
Vol 696 ◽  
Author(s):  
R. Würz ◽  
W. Bohne ◽  
W. Fuhs ◽  
J. Röhrich ◽  
M. Schmidt ◽  
...  

AbstractCaF2 films with thicknesses in the monolayer range (<20 Å) were grown on Si(111) by evaporation from a CaF2 source at UHV conditions. They were characterized ex-situ by Heavy-Ion Elastic Recoil Detection Analysis (HI-ERDA), RBS/Channeling, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The F/Ca ratio of the films was found to depend on the growth temperature Ts and to deviate appreciably from the stoichiometric composition (F/Ca=2). Due to an interface reaction which leads to a CaF-interface layer a change from polycrystalline to epitaxial growth occurs at Ts=450°C. At higher temperature film growth started with a closed layer of CaF on top of which CaF2 layers with an increasing fraction of pinholes were formed. By means of a two-step process at different temperatures, the amount of pinholes could be strongly reduced. It was found, that buffer layers of CaF2 with a CaF interface layer introduced in Au/p-Si contacts enhance the barrier height by as much as 0.36eV to values of 0.64eV.


1992 ◽  
Vol 283 ◽  
Author(s):  
C. Manfredotti ◽  
F. Fizzotti ◽  
G. Amato ◽  
L. Boarino ◽  
M. Abbas

ABSTRACTBoth B- and P- doped silicon films deposited by Low Pressure Chemical Vapor Deposition (LPCVD) at 300 °C (p-type) and 420 °C (n-type) have been characterized by optical absorption, Photothermal Deflection Spectroscopy (PDS), resistivity, Elastic Recoil Detection Analysis (ERDA), Transmission Electron Microscopy (TEM), Convergent-Beam Electron Diffraction (CBED) and Raman spectroscopy measurements. P-doped films, deposited at large PH3 flux rates, show a high degree of microcrystallinity, indicating that P activates the nucleation process even at low temperatures. In this case, values of activation energy of resistivity as low as 0.007 eV were obtained. Both TEM and RAMAN results confirm a volume percentage of micro crystallinity above 30%. On the contrary, B-doped samples are not microcrystalline at least in the doping range investigated, and show a behaviour not different from samples deposited by PECVD.


2001 ◽  
Vol 664 ◽  
Author(s):  
M. Kondo ◽  
S. Suzuki ◽  
Y. Nasuno ◽  
A. Matsuda

ABSTRACTWe have developed a plasma enhanced chemical vapor deposition (PECVD) technique for high-rate growth of µc-Si:H at low temperatures using hydrogen diluted monosilane source gas under high-pressure depletion conditions. It was found that material qualities deteriorate, e.g. crystallinity decreases and defect density increases with increasing growth rate mainly due to ion damage from the plasma. We have found that deuterium dilution improves not only the crystallinity but also defect density as compared to hydrogen dilution and that deuterium to hydrogen ratio incorporated in the film has a good correlation with crystallinity. The advantages of the deuterium dilution are ascribed to lower ion bombardment due to slower ambipolar diffusion of deuterium ion from the plasma. Further improvement of material quality has been achieved using a triode technique where a mesh electrode inserted between cathode and anode electrodes prevents from ion bombardment. In combination with a shower head cathode, the triode technique remarkably improves the crystallinity as well as defect density at a high growth rate. As a consequence, we have succeeded to obtain much better crystallinity and uniformity at 5.8 nm/s with a defect density of 2.6×1016cm−3. We also discuss the limiting factors of growth rate and material quality for µc-Si solar cells.


2001 ◽  
Vol 675 ◽  
Author(s):  
André Golanski ◽  
Dieter Grambole ◽  
Jean Hommet ◽  
Folker Herrmann ◽  
Philippe Kern ◽  
...  

ABSTRACTA Distributed Electron Cyclotron Resonance plasma reactor powered by a microwave generator operating at 2.45 GHz was used to deposit ta-C:H (Diamond-Like Carbon, DLC) thin films at RT. A graphite sputtering target immersed in an argon plasma was used as carbon source. The Ar plasma density was about 5×1010 cm-3. Single crystal <100> Si substrates were RF biased to a negative voltage of -80 V. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), nuclear reaction analysis (NRA) using the resonance at 6.385 MeV of the reaction: 15N + 1H-→ 12C + 4He + γ, elastic recoil detection analysis (ERDA) and Rutherford backscattering (RBS) were used to investigate the early phase of the growth. The morphology of the films grown at low pressure (0.3 mTorr) is shown to be dominated by stress-mediated nucleation leading to formation of basket-like clusters of circular hillocks 20 nm high surrounded by a planar, mostly sp2 bonded film ∼8 nm thick. With increasing plasma pressure the spatial frequency of the hillocks becomes random and the growth is dominated by the Stranski-Krastanov mode. The XPS data taken at decreasing emergence angles show that the structure of the hillocks is dominated by sp3 bonded carbon. The XPS argon signal disappears at 10° emergence angle indicating that integration of argon occurs mainly within the sp bonded regions. The NRA and ERDA analysis show that the amount of integrated hydrogen decreases with increasing substrate current density. RBS data indicate that increasing bias enhances argon integration.


Sign in / Sign up

Export Citation Format

Share Document